Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Prof. Dr. Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Professor Emerita, Research Professor At New York University, United States

Prof. Dr. Marilyn E. Noz is a highly accomplished physicist and medical imaging researcher whose pioneering contributions have shaped the fields of nuclear medicine, radiation therapy optimization, and image fusion for cancer detection. Holding a Ph.D. in Physics from Fordham University, she has led impactful international collaborations with renowned institutions such as the Karolinska Institute in Sweden and secured major grants from the NIH and industry partners. Her extensive publications in leading journals and conferences, along with editorial roles for IEEE Transactions on Medical Imaging and Medical Physics, highlight her academic excellence. As a licensed Medical Physicist and Diplomate of multiple professional boards, she has combined expertise with leadership in global scientific societies. Widely recognized through prestigious awards, she continues to inspire innovation, education, and advancement in medical physics research.

Professional Profile

Google Scholar | Scopus Profile

Education

Prof. Dr. Marilyn E. Noz pursued her academic journey with distinction, earning a B.A. in Mathematics with Summa Cum Laude honors from Marymount College, followed by an M.S. and Ph.D. in Physics from Fordham University. Her solid foundation in mathematics and physics enabled her to build expertise at the intersection of science and medicine. Over the course of her education, she cultivated a deep interest in nuclear medicine, radiological sciences, and medical physics, which later became the driving force of her career. With a strong blend of theoretical knowledge and practical training, she combined rigorous physics principles with medical applications, setting the stage for groundbreaking contributions in medical imaging, radiation therapy, and cancer research. Her educational path reflects excellence, commitment, and a clear vision toward scientific advancement.

Experience

Prof. Dr. Marilyn E. Noz has served in prominent academic and medical institutions, shaping both education and clinical research in nuclear medicine and radiology. She began her career in physics instruction and steadily advanced to hold long-standing faculty positions at New York University School of Medicine, where she became Professor and later Professor Emerita in the Department of Radiology. Alongside teaching, she contributed as a physicist in leading hospitals, where her expertise was vital in advancing nuclear medicine practices. She also held adjunct and associate professor positions in physics departments, enriching the academic landscape with her teaching and mentorship. Her professional journey reflects a balance of academic leadership, hands-on research, and clinical involvement, making her one of the most influential figures in medical physics education and practice.

Research Interest

The research interests of Prof. Dr. Marilyn E. Noz span across nuclear medicine physics, medical imaging, radiation therapy, and cancer detection. A key area of her work has been in image fusion—integrating structural and functional imaging modalities to enhance diagnosis and optimize therapy. She has actively explored radiation therapy planning, multimodality visualization, and the use of radiolabeled antibodies for cancer treatment. Her collaborations with international institutes have enabled the translation of advanced imaging research into clinical practice, making her work highly impactful. She has also contributed to the study of craniofacial disorders through imaging analysis and pioneered computational approaches for medical image processing. Her research consistently bridges the gap between physics and medicine, with a vision to improve healthcare outcomes through innovation in imaging sciences.

Award and Honor

Prof. Dr. Marilyn E. Noz has received numerous awards and honors recognizing her outstanding contributions to medical physics and imaging research. She earned the Giovanni DiChiro Award for excellence in scientific publication and multiple Best Poster and Cum Laude Awards from prestigious scientific societies. Her work on CT/SPECT fusion received repeated recognition at international conferences, and her innovative contributions in computer-assisted tomography and image fusion placed her as a finalist in the ComputerWorld-Smithsonian Institute Awards. Additionally, she was honored with fellowships such as the National Defense Education Act Fellowship and the Fogarty International Research Fellowship, which supported her groundbreaking studies abroad. These distinctions highlight not only her scientific excellence but also her role as a global leader whose research achievements have advanced both clinical and academic communities.

Research Skill

Prof. Dr. Marilyn E. Noz possesses exceptional research skills in medical imaging, nuclear medicine physics, and computational analysis for clinical applications. Her expertise lies in multimodality image fusion, radiation therapy optimization, and advanced visualization techniques for cancer diagnosis and treatment planning. She has demonstrated strong proficiency in translating theoretical concepts into clinical tools, supported by her successful leadership in grant-funded projects with NIH, international research institutes, and industry partners. Her editorial contributions to leading journals reflect her analytical and evaluative abilities, while her involvement in interdisciplinary teams highlights collaboration and innovation. With skills ranging from experimental physics to applied medical technologies, she has consistently pushed the boundaries of imaging research. Her ability to combine technical precision, clinical impact, and academic leadership defines her as a true pioneer in the field.

Publication Top Notes

  • Title: Theory and applications of the Poincaré group
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2024
    Citation: 387

  • Title: Graphics applied to medical image registration
    Authors: GQ Maguire, ME Noz, H Rusinek, J Jaeger, EL Kramer, JJ Sanger, …
    Year: 1991
    Citation: 193

  • Title: Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience
    Authors: VS Lee, H Rusinek, ME Noz, P Lee, M Raghavan, EL Kramer
    Year: 2003
    Citation: 162

  • Title: Linear canonical transformations of coherent and squeezed states in the Wigner phase space
    Authors: D Han, YS Kim, ME Noz
    Year: 1988
    Citation: 110

  • Title: Stokes parameters as a Minkowskian four-vector
    Authors: D Han, YS Kim, ME Noz
    Year: 1997
    Citation: 103

  • Title: Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer
    Authors: CJ Schettino, EL Kramer, ME Noz, S Taneja, P Padmanabhan, H Lepor
    Year: 2004
    Citation: 96

  • Title: Principal axes and surface fitting methods for three-dimensional image registration
    Authors: H Rusinek, WH Tsui, AV Levy, ME Noz, MJ de Leon
    Year: 1993
    Citation: 96

  • Title: Constructing topologically connected surfaces for the comprehensive analysis of 3-D medical structures
    Authors: AD Kalvin, B Haddad, ME Noz
    Year: 1991
    Citation: 80

  • Title: Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets
    Authors: RJT Gorniak, EL Kramer, GQ Maguire Jr, ME Noz, CJ Schettino, …
    Year: 2003
    Citation: 55

  • Title: Three-dimensional movements of the lumbar spine facet joints and segmental movements: in vivo examinations of normal subjects with a new non-invasive method
    Authors: P Svedmark, T Tullberg, ME Noz, GQ Maguire Jr, MP Zeleznik, …
    Year: 2012
    Citation: 36

  • Title: Validation of a 3D CT method for measurement of linear wear of acetabular cups: a hip simulator study
    Authors: A Jedenmalm, F Nilsson, ME Noz, DD Green, UW Gedde, IC Clarke, …
    Year: 2011
    Citation: 36

  • Title: A new technique for diagnosis of acetabular cup loosening using computed tomography: preliminary experience in 10 patients
    Authors: H Olivecrona, L Olivecrona, L Weidenhielm, ME Noz, JK Hansen, …
    Year: 2008
    Citation: 29

  • Title: Interferometers and decoherence matrices
    Authors: D Han, YS Kim, ME Noz
    Year: 2000
    Citation: 29

  • Title: Mathematical Devices for Optical Sciences
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2019
    Citation: 21

Conclusion

Prof. Dr. Marilyn E. Noz represents a rare combination of academic excellence, research innovation, and global leadership in medical physics. Her contributions to nuclear medicine imaging, cancer detection, and radiation therapy optimization have significantly advanced the frontiers of healthcare and research. Through her international collaborations, editorial roles, and active participation in professional societies, she has influenced both scientific communities and clinical practice worldwide. Recognized with numerous awards and honors, she continues to inspire future generations of scientists and researchers. Her legacy lies not only in her research but also in her mentorship and dedication to education. With her unwavering commitment to advancing medical physics, Prof. Dr. Marilyn E. Noz remains a distinguished figure whose work has left a lasting impact on science and society.

Thomas Kotoulas | Mathematical Physics | Best Researcher Award

Dr. Thomas Kotoulas | Mathematical Physics | Best Researcher Award

Researcher at Aristotle University of Thessaloniki, Greece.

Dr. Thomas Kotoulas is a distinguished researcher specializing in Newtonian Dynamics and Celestial Mechanics, with a prolific academic record comprising 41 refereed journal articles, including 18 monographs. His research spans critical areas such as the restricted three-body problem, periodic orbit computation, symplectic mapping models, and inverse problems in Newtonian dynamics, with applications in astronomy and galactic dynamics. He has been actively involved in funded research projects and received prestigious fellowships, including one from the National Foundation of Fellowships (I.K.Y.). Recognized for his outstanding peer-review contributions, he has been awarded the Outstanding Reviewer Award by Research in Astronomy and Astrophysics and acknowledged by Astrophysics and Space Science. He has reviewed for 13 international journals and contributed to Mathematical Reviews. With his extensive work in celestial mechanics, his expertise plays a crucial role in understanding planetary and asteroid dynamics, making him a strong candidate for the Best Researcher Award.

Professional Profile 

Google Scholar

Education

Dr. Thomas Kotoulas holds a B.Sc. in Physics from the Aristotle University of Thessaloniki (A.U.Th.), where he graduated with a very good distinction (7.71/10) in 1995. He pursued his Ph.D. in Celestial Mechanics and Dynamical Systems at the same institution, completing his thesis, “Dynamical evolution of small bodies at resonant areas in the Outer Solar System”, in 2003 with highest honors (Excellent). During his doctoral studies, he was awarded a fellowship from the National Foundation of Fellowships (I.K.Y.), recognizing his academic excellence. His postdoctoral research included significant contributions to the study of the restricted three-body problem, funded by the Greek Ministry of Education and the European Community. His educational background, rooted in classical physics, dynamical systems, and celestial mechanics, laid the foundation for his impactful career in Newtonian dynamics, orbital mechanics, and inverse problems in physics, with direct applications in astronomy and galactic dynamics.

Professional Experience

Dr. Kotoulas has built an impressive career in celestial mechanics and dynamical systems, contributing extensively through research, peer review, and mentorship. He has worked as a postdoctoral researcher for over five years, with projects focusing on the dynamics of the restricted three-body problem and applications in asteroid and Kuiper Belt studies. His professional journey includes participation in the EPEAEK II PYTHAGORAS research project, where he played a key role in modeling planetary resonances. He has been a reviewer for over 13 prestigious scientific journals, including Celestial Mechanics and Dynamical Astronomy, Astronomy and Astrophysics, and Monthly Notices of the Royal Astronomical Society (MNRAS). Additionally, he has authored 41 research papers, 18 of which are monographs, showcasing his expertise in orbital stability, periodic orbits, and inverse problems. His experience solidifies his reputation as a leading figure in Newtonian dynamics and celestial mechanics.

Research Interests

Dr. Kotoulas’ research is deeply rooted in Newtonian dynamics, celestial mechanics, and inverse problems in physics, with a strong focus on planetary motion, asteroid dynamics, and resonance stability. His work on the restricted three-body problem involves studying periodic orbits, resonance phenomena, and dynamical stability, with applications in asteroid belt studies, planetary migration, and Kuiper Belt dynamics. He has also made significant contributions to the inverse problem of Newtonian dynamics, using differential equations to reconstruct gravitational force fields from observed orbital data. His research integrates mathematical modeling, computational methods, and astrophysical applications, contributing to a deeper understanding of planetary system evolution. Additionally, his expertise in symplectic mapping models, spectral analysis of orbits, and stability analysis has provided new insights into long-term orbital behaviors and galactic dynamics, positioning him as a key contributor to the field of astrodynamics and dynamical astronomy.

Awards and Honors

Dr. Kotoulas has received numerous awards and distinctions for his contributions to celestial mechanics and dynamical astronomy. He was recognized as one of the best external reviewers by Research in Astronomy and Astrophysics in 2022, earning the Outstanding Reviewer Award. Additionally, he received formal recognition from Astrophysics and Space Science for his invaluable peer-review contributions. His research excellence has been acknowledged through a prestigious fellowship from the National Foundation of Fellowships (I.K.Y.), awarded during his Ph.D. studies. His dedication to advancing celestial mechanics is further reflected in his role as a registered reviewer for Mathematical Reviews, where he has contributed expert evaluations of influential research papers. These honors underscore his exceptional impact in the field, his commitment to scientific integrity, and his standing as a respected researcher in Newtonian dynamics and astrophysics.

Conclusion

Dr. Thomas Kotoulas is a renowned researcher in celestial mechanics, Newtonian dynamics, and inverse problems in physics, with an extensive academic, research, and professional portfolio. His contributions to orbital stability, planetary resonance, and dynamical system modeling have provided valuable insights into planetary and asteroid motion. With 41 research publications, 18 monographs, multiple fellowships, and prestigious reviewer awards, he has established himself as a leading figure in astrophysical research. His dedication to advancing celestial mechanics, combined with his active role in peer review and academic mentorship, makes him a highly deserving candidate for the Best Researcher Award. His work continues to shape the understanding of orbital mechanics and planetary system evolution, reinforcing his position as a respected scientist in the field of dynamical astronomy and mathematical physics.

Publications Top Noted

  • Planar periodic orbits in exterior resonances with Neptune

    • Authors: G. Voyatzis, T. Kotoulas
    • Year: 2005
    • Citations: 44
    • Source: Planetary and Space Science, 53(11), 1189-1199
  • Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low-frequency analysis

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2004
    • Citations: 43
    • Source: Celestial Mechanics and Dynamical Astronomy, 88, 343-363
  • On the stability of the Neptune Trojans

    • Authors: R. Dvorak, R. Schwarz, Á. Süli, T. Kotoulas
    • Year: 2007
    • Citations: 33
    • Source: Monthly Notices of the Royal Astronomical Society, 382(3), 1324-1330
  • Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with Neptune

    • Authors: G. Voyatzis, T. Kotoulas, J.D. Hadjidemetriou
    • Year: 2005
    • Citations: 31
    • Source: Celestial Mechanics and Dynamical Astronomy, 91, 191-202
  • On the 2/1 resonant planetary dynamics – periodic orbits and dynamical stability

    • Authors: G. Voyatzis, T. Kotoulas, J.D. Hadjidemetriou
    • Year: 2009
    • Citations: 30
    • Source: Monthly Notices of the Royal Astronomical Society, 395(4), 2147-2156
  • Resonant periodic orbits of trans-Neptunian objects

    • Authors: T.A. Kotoulas, J.D. Hadjidemetriou
    • Year: 2002
    • Citations: 22
    • Source: Earth, Moon, and Planets, 91, 63-93
  • Three-dimensional periodic orbits in exterior mean motion resonances with Neptune

    • Authors: T.A. Kotoulas, G. Voyatzis
    • Year: 2005
    • Citations: 21
    • Source: Astronomy & Astrophysics, 441(2), 807-814
  • Homogeneous two-parametric families of orbits in three-dimensional homogeneous potentials

    • Authors: G. Bozis, T.A. Kotoulas
    • Year: 2005
    • Citations: 21
    • Source: Inverse Problems, 21(1), 343
  • Planar retrograde periodic orbits of the asteroids trapped in two-body mean motion resonances with Jupiter

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2020
    • Citations: 20
    • Source: Planetary and Space Science, 182, 104846
  • On the bifurcation and continuation of periodic orbits in the three-body problem

    • Authors: K.I. Antoniadou, G. Voyatzis, T. Kotoulas
    • Year: 2011
    • Citations: 20
    • Source: International Journal of Bifurcation and Chaos, 21(08), 2211-2219
  • Three-dimensional potentials producing families of straight lines (FSL)

    • Authors: G. Bozis, T.A. Kotoulas
    • Year: 2004
    • Citations: 19
    • Source: Rendiconti del Seminario della Facoltà di Scienze dell’Università di …
  • The dynamics of the 1:2 resonant motion with Neptune in the 3D elliptic restricted three-body problem

    • Authors: T.A. Kotoulas
    • Year: 2005
    • Citations: 17
    • Source: Astronomy & Astrophysics, 429(3), 1107-1115
  • Retrograde periodic orbits in 1/2, 2/3 and 3/4 mean motion resonances with Neptune

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2020
    • Citations: 15
    • Source: Celestial Mechanics and Dynamical Astronomy, 132 (6-7), 33
  • Two-parametric families of orbits in axisymmetric potentials

    • Authors: T.A. Kotoulas, G. Bozis
    • Year: 2006
    • Citations: 12
    • Source: Journal of Physics A: Mathematical and General, 39(29), 9223
  • Construction of 3D potentials from a preassigned two-parametric family of orbits

    • Authors: M.C. Anisiu, T.A. Kotoulas
    • Year: 2006
    • Citations: 11
    • Source: Inverse Problems, 22(6), 2255
  • The dynamical stability of a Kuiper Belt-like region

    • Authors: A. Celletti, T. Kotoulas, G. Voyatzis, J. Hadjidemetriou
    • Year:
    • Citations: 10
    • Source: Monthly Notices of the Royal Astronomical Society, 378(3), 1153-1164