lhtisham ul haq | Mathematical Physics | Best Researcher Award

Dr. lhtisham ul haq | Mathematical Physics | Best Researcher Award

Student at University of Science and Technology China, China

Dr. Ihtisham Ulhaq is an emerging physicist and sustainability innovator 🌱🔬, currently advancing his Ph.D. at the University of Science and Technology of China 🇨🇳. With a robust foundation in materials science and renewable energy, his pioneering research on lead-free perovskite solar cells ⚡ and spectrally split agrivoltaic systems 🌞🌾 is shaping eco-friendly energy solutions with global relevance. Dr. Ulhaq has authored 12 peer-reviewed publications 📚—five as the lead author—across high-impact Q1/Q2 journals, showcasing his scientific rigor and thought leadership. His multidisciplinary collaborations across China, Saudi Arabia, and Pakistan foster cutting-edge innovation in nanomaterials, photovoltaics, and sustainable agriculture 🤝🌍. With hands-on expertise in MOCVD, thin-film deposition, and doping strategies, he is bridging theoretical insights with scalable applications. Passionate, visionary, and globally connected, Dr. Ulhaq is driving transformative change in the fields of clean energy and agritech, embodying the spirit of next-generation research excellence 🌐🏆.

Professional Profile

Google Scholar
ORCID Profile

Education 🎓📚

Dr. Ihtisham Ulhaq’s academic journey reflects a deep commitment to the frontiers of physics and sustainable technologies. He earned his M.Phil. in Physics from the University of Lahore 🇵🇰, where he laid the groundwork for his specialization in energy materials. Currently pursuing his Ph.D. at the prestigious University of Science and Technology of China 🇨🇳, Dr. Ulhaq focuses on renewable energy and advanced materials research. His educational background is anchored in strong theoretical physics, coupled with a practical mastery of experimental tools such as thin-film deposition, nanostructuring, and semiconductor engineering 🔬. With a curriculum steeped in interdisciplinary learning and international exposure, he has cultivated the analytical and innovative skill set required to solve global energy and environmental challenges 🌍. His academic excellence has been consistently demonstrated through scholarly achievements, publication output, and research-led learning, laying a solid foundation for a promising career in advanced scientific innovation 🌟.

Professional Experience 🧪🏢

Though still early in his career, Dr. Ihtisham Ulhaq has amassed significant professional experience through intensive academic research and collaborative projects. As a doctoral researcher at the University of Science and Technology of China, he has spearheaded studies in photovoltaics, nanomaterials, and solar cell optimization ☀️. He has independently led and co-led three major research initiatives, including the design of a spectrally split agrivoltaic system combined with container farming 🌿🏗️—a novel concept integrating agriculture and energy efficiency. His work environment emphasizes international collaboration, where he has actively engaged with research partners across China, Saudi Arabia, and Pakistan 🤝. His hands-on experience in laboratory techniques such as MOCVD, doping analysis, and electron transport layer enhancement equips him with a comprehensive skill set ideal for next-gen green technologies 💡. Dr. Ulhaq’s professional path is defined by rigorous experimentation, innovation-oriented thinking, and a mission to translate science into sustainable global solutions 🌐.

Research Interest 🔍⚡

Dr. Ihtisham Ulhaq’s research passion lies at the intersection of clean energy, nanotechnology, and sustainable agriculture. He specializes in developing lead-free perovskite solar cells, aiming to improve their stability, efficiency, and environmental safety 🌞♻️. His interest extends to agrivoltaics, where he designs hybrid systems combining renewable energy generation with agricultural productivity—an area where he proposed a unique spectrally split system for container farming 🌾💧. His scientific curiosity drives explorations in bandgap engineering, doping strategies, and interface tailoring to enhance energy material performance at the nanoscale. He is equally intrigued by the optical and magnetic properties of functional thin films, especially ferrite-based materials with communication applications 📡. With a vision to create integrated, eco-friendly technologies, Dr. Ulhaq’s research is highly interdisciplinary and aligned with sustainable development goals 🧭. He is deeply committed to transforming lab-scale discoveries into scalable, real-world solutions that contribute to a greener and more resilient future 🌍🔋.

Awards and Honors 🏆🎖️

While still in the formative years of his research career, Dr. Ihtisham Ulhaq’s accomplishments have earned him increasing recognition in academic circles 🌟. His 12 peer-reviewed journal publications, five of which he authored as the primary investigator, have appeared in reputable Q1/Q2 scientific journals—a significant feat in competitive research domains 📘🧠. His work on lead-free perovskite solar cells and agrivoltaic systems has garnered attention for its originality and relevance to sustainable innovation 🌱🔬. While he is actively being considered for prominent awards such as the Best Researcher Award, his contributions are already making ripples within the scientific community through impactful research and global collaboration 🌐. As a rising researcher, he is paving the way for future distinctions, honors, and fellowships tied to innovation, green energy, and interdisciplinary science. These early milestones reflect a trajectory of excellence, driven by purpose, persistence, and a profound scientific vision 🧭.

Conclusion ✨📈

Dr. Ihtisham Ulhaq exemplifies the spirit of the modern researcher: globally engaged, scientifically rigorous, and deeply committed to sustainability. Through his pioneering work in clean energy—particularly in lead-free perovskite solar cells and agrivoltaic system integration—he is addressing some of the most urgent challenges of our time 🌍⚡. His multidisciplinary expertise, spanning materials science, physics, nanotechnology, and agriculture, positions him as a key innovator in eco-technology and renewable solutions 🔄🌿. With a growing publication record, dynamic collaborations, and a proactive approach to scientific inquiry, Dr. Ulhaq is not only building a distinguished academic profile but also laying the groundwork for real-world impact 🏗️📊. As he continues to expand his research, leadership, and outreach, his trajectory promises contributions that will resonate globally. In every dimension—academic, practical, and visionary—Dr. Ulhaq embodies the values deserving of recognition through the Best Researcher Award 🏅.

Publications Top Notes

🔬 Title: Impact of molybdenum doping on the optoelectronic and structural properties of CsPbIBr₂ perovskite solar cell
👨‍🔬 Authors: MI Khan, A Mujtaba, S Hussain, M Atif, AI Qureshi, W Shahid, A Ali
📅 Year: 2024
📈 Citations: 29
📚 Source: Physica B: Condensed Matter, Volume 678, Article 415758


🔬 Title: Bandgap reduction and efficiency enhancement in Cs₂AgBiBr₆ double perovskite solar cells through gallium substitution
👨‍🔬 Authors: MI Khan, A Ullah, A Mujtaba, BS Almutairi, W Shahid, A Ali, JR Choi
📅 Year: 2024
📈 Citations: 24
📚 Source: RSC Advances, Volume 14 (8), Pages 5440–5448


🔬 Title: Influence of gallium on structural, optical and magnetic properties of Bi-YIG thin films
👨‍🔬 Authors: MS Hasan, MI Khan, SS Ali, A Brahmia
📅 Year: 2024
📈 Citations: 10
📚 Source: Materials Science and Engineering: B, Volume 301, Article 117180


🔬 Title: Bandgap Engineering and Enhancing Optoelectronic Performance of a Lead-Free Double Perovskite Cs₂AgBiBr₆ Solar Cell via Al Doping
👨‍🔬 Authors: A Ullah, M Iftikhar Khan, Ihtisham-ul-haq, BS Almutairi, DB N. AlResheedi, et al.
📅 Year: 2024
📈 Citations: 9
📚 Source: ACS Omega, Volume 9 (16), Pages 18202–18211


🔬 Title: Trans-polyacetylene doped Cs₂AgBiBr₆: Band gap reduction for high-efficiency lead-free double perovskite solar cells
👨‍🔬 Authors: A Ullah, MI Khan, BS Almutairi, A Laref, A Dahshan
📅 Year: 2024
📈 Citations: 4
📚 Source: Results in Physics, Volume 60, Article 107654


🔬 Title: A novel heterostructure of Cr-doped TiO₂ for reducing the recombination rate of dye sensitized solar cells
👨‍🔬 Authors: MI Yasin, MI Khan, S Kanwal, DBN ALResheedi, M Fatima, N Alwadai, et al.
📅 Year: 2024
📈 Citations: 3
📚 Source: Journal of the Korean Ceramic Society, Volume 61 (4), Pages 569–580


🔬 Title: Improving Cs₂AgBiBr₆ double perovskite solar cells through graphdiyne doping: A Stride towards enhanced performance
👨‍🔬 Authors: S Umer, MI Khan, A Ullah, M Asad, W Mnif, Z Algarni, MI Saleem
📅 Year: 2024
📈 Citations: 2
📚 Source: Optical Materials, Volume 156, Article 115896


🔬 Title: Roadmap to 2D Graphene Nanomaterials-Based Biosensors for Early Cancer Detection
👨‍🔬 Authors: JWLHIUHMA Khan
📅 Year: 2025
📈 Citations: 1
📚 Source: Plasmonics


🔬 Title: Enhancing efficiency in double perovskite solar cells through bandgap reduction via organic polymer doping
👨‍🔬 Authors: MI Khan, A Mujtaba, A Ullah, B Ali, M Atif, MS Hasan
📅 Year: 2025
📈 Citations: 1
📚 Source: Results in Chemistry, Volume 13, Article 101999


🔬 Title: Enhancing the Efficiency and Stability of Cs₂AgBiBr₆ Solar Cells via MAPbBr₃ Decoration
👨‍🔬 Authors: MI Khan, M Li, OAA Ali, SF Mahmoud
📅 Year: 2025
📚 Source: Materials Research Bulletin, Article 113501


🔬 Title: Enhancing efficiency of Cs₂AgBiBr₆ double perovskite solar cells through bandgap reduction by molybdenum doping
👨‍🔬 Authors: IMIKLBFHERP Patil
📅 Year: 2025
📚 Source: Journal of the Korean Ceramic Society


🔬 Title: Enhancing solar cell efficiency: lead-free double perovskite solar cells Cs₂AgBiBr₆ with magnesium-doped and Zn₂SnO₄ electron transport layer
👨‍🔬 Authors: MI Khan, Lamia Ben Farhat
📅 Year: 2024
📚 Source: Journal of Sol-Gel Science and Technology, Volume 112 (2), Pages 468–479

Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Prof. Dr. Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Head of Laboratory of Mathematical Physics at Lebedev Physical Institute of RAS, Russia

Dr. Evgenii Alexandrovich Kuznetsov is a distinguished Russian physicist and mathematician, renowned for his groundbreaking research in nonlinear waves, turbulence, and integrable systems. He earned his Ph.D. in Mathematics and Physics in 1973 and has since contributed significantly to the fields of plasma physics, hydrodynamics, and nonlinear wave theory. Dr. Kuznetsov holds prominent academic positions, including his role as a Principal Research Fellow at the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has been a leading figure in the Center for Nonlinear Studies and has served as Director of the Novosibirsk Department of the International Institute for Nonlinear Science. With extensive international experience as a visiting professor at top institutions worldwide, he is deeply engaged in promoting mathematical physics education. His legacy is marked by numerous publications, significant contributions to theoretical physics, and a strong commitment to advancing nonlinear science globally.

Professional Profile 

Google Scholar
Scopus Profile

Education

Dr. Evgenii Alexandrovich Kuznetsov’s educational journey began at Novosibirsk State University, where he completed his undergraduate studies in Physics in 1969. ‘Including Deputy Director of the Landau Institute of Theretical Physics and the Center of Nonlinear Studies”. His academic pursuits led to a Ph.D. in Mathematics and Physics in 1973 from the Institute for Nuclear Physics at the Siberian Branch of the USSR Academy of Sciences. His doctoral thesis focused on nonlinear waves in plasma, under the guidance of Prof. V.E. Zakharov. In 1981, he earned his Doctorate in Mathematics and Physics, with a thesis on the stability of nonlinear waves and turbulence, solidifying his expertise in nonlinear dynamics. His educational background laid the foundation for a distinguished career in theoretical physics, contributing significantly to both research and academic teaching in the field.
(i) Derivation of the so-called Zakharov-Kuznetsov (ZK) equation for describing ion-acoustic waves in a magnetzed plasma, finding within this equation 3D solitons with their Lyapunov stability proving with the help of the Sobolev integral estimation;
(ii) Finding first time exact anisotropic spectra of weak turbulence of the Kolmogorov type for ion-acoustic waves in strongly magnetized plasma with the help of the so called Zakharov-Kuznetsov transformation;
(iii) Construting first time exact solution for breathers of the 1D nonlinear Schrodinger equation by means of the inverse scattering transform.

Professional Experience

Dr. Kuznetsov’s professional experience spans over five decades, beginning as a trainee researcher in 1969 at the Institute for Nuclear Physics. He later became a senior research fellow and head of the Laboratory of Nonlinear Physics at the Institute of Automation and Electrometry. In 1992, he joined the Landau Institute for Theoretical Physics and the P.N. Lebedev Physical Institute, where he held pivotal roles, including Deputy Director of the Center for Nonlinear Studies. He has also been a visiting professor at renowned institutions like the Weizmann Institute of Science and the University of Colorado. Throughout his career, Dr. Kuznetsov has contributed immensely to research and education in nonlinear physics, turbulence, and integrable systems. His extensive career reflects his leadership in scientific research and his role as a mentor to future generations of physicists.

Research Interests

Dr. Kuznetsov’s primary research interests revolve around nonlinear wave dynamics, turbulence, and integrable systems. He has made significant contributions to the study of solitons, plasma physics, and nonlinear hydrodynamics. His research spans a variety of topics, including the stability of nonlinear waves, wave propagation in plasma, and the mathematics of integrable systems. He has pioneered the study of complex wave interactions and turbulence, particularly in plasma and fluid dynamics. Dr. Kuznetsov has also worked on the development of theoretical frameworks for nonlinear phenomena in various physical systems, including those in plasma, hydrodynamics, and integrable systems. His work continues to influence the understanding of nonlinear dynamics in both classical and quantum systems.

Awards and Honors

Dr. Kuznetsov has received numerous awards and honors throughout his career, recognizing his outstanding contributions to theoretical physics and nonlinear science. He has been a principal research fellow at prestigious Russian institutes, including the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has received recognition for his role in advancing nonlinear physics, particularly in the areas of wave dynamics, turbulence, and solitons. His work has also led to invitations as a visiting professor at esteemed institutions worldwide, further attesting to his global influence in the field. His leadership in the Center for Nonlinear Studies and his involvement in international research collaborations have solidified his reputation as a leader in mathematical physics. He was awarded by the L.I. Mandelstam Price of the Russian Academy of Sciences for the cycle of works “Wave collapses in plasma, optics and hydrodynamics” (2012), elected as a full member of the Russian Academy of Sciences (2016).

Conclusion

Dr. Evgenii Kuznetsov’s career is marked by groundbreaking research, leadership in the scientific community, and a deep commitment to advancing the field of nonlinear physics. His extensive academic experience, both as a researcher and educator, has made him a prominent figure in theoretical physics. He has significantly contributed to our understanding of nonlinear waves, turbulence, and integrable systems, leaving a lasting legacy in these fields. His leadership roles at major Russian institutes and his involvement in international collaborations have established him as a key figure in the global scientific community. Dr. Kuznetsov’s continued work and mentorship will undoubtedly inspire future generations of physicists, ensuring that his impact on the field of mathematical physics endures for years to come.

Publications Top Noted

  • Title: Three-Dimensional Acoustic Turbulence: Weak Versus Strong
    Authors: E.A. Kochurin, Evgeny A. Kuznetsov
    Year: 2024
    Citations: 3
    Source: Physical Review Letters

  • Title: Mathematical Methods of Physics: Problems with Solutions
    Authors: I.V. Kolokolov, E.A. Kuznetsov, A.I. Milstein, D.A. Shapiro, E.G. Shapiro

  • Title: Magnetic Filaments: Formation, Stability, and Feedback
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2024
    Source: Mathematics

  • Title: Quasiclassical Dynamics of Nonlinear Wave Systems
    Authors: E.A. Kuznetsov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Reply to the Comment to the Paper “Symmetry Approach in the Problem of Gas Expansion into Vacuum”
    Authors: E.A. Kuznetsov, M.Y. Kagan

  • Title: Nonlinear Dynamics of Slipping Flows
    Authors: E.A. Kuznetsov, E.A. Mikhailov, M.G. Serdyukov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review)
    Authors: M.Y. Kagan, S.V. Aksenov, A.V. Turlapov, V.M. Silkin, E.A. Burovski
    Year: 2023
    Citations: 3
    Source: JETP Letters

  • Title: Direct Numerical Simulation of Acoustic Turbulence: Zakharov–Sagdeev Spectrum
    Authors: E.A. Kochurin, E.A. Kuznetsov
    Year: 2022
    Citations: 10
    Source: JETP Letters

  • Title: Slipping Flows and Their Breaking
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2022
    Citations: 8
    Source: Annals of Physics

  • Title: Instability of Solitons and Collapse of Acoustic Waves in Media with Positive Dispersion
    Authors: E.A. Kuznetsov
    Year: 2022
    Citations: 5
    Source: Journal of Experimental and Theoretical Physics

  • Title: Turbulence of Ion Sound in a Plasma Located in a Magnetic Field
    Authors: E.A. Kuznetsov
    Year: 1972
    Citations: 58
    Source: Soviet Physics JETP, Vol. 35, p. 310
  • Title: Solitons in a Parametrically Unstable Plasma
    Authors: E.A. Kuznetsov
    Year: 1977
    Citations: 655
    Source: Doklady Akademii Nauk SSSR, Vol. 236, pp. 575–577
  • Title: Three-Dimensional Solitons
    Authors: V.E. Zakharov, E.A. Kuznetsov
    Year: 1974
    Citations: 500
    Source: Soviet Physics – Journal of Experimental and Theoretical Physics