Alexander Bratus | Applied Mathematics | Best Researcher Award

Prof. Dr. Alexander Bratus | Applied Mathematics | Best Researcher Award

Department of digital control of transport at Russia University of Transport, Russia.

Prof. Dr. Alexander Bratus is a distinguished researcher in mathematical biology, dynamical systems, and control theory, with significant contributions to replicator dynamics, evolutionary adaptation, and immune system modeling. His extensive research, spanning biological systems, cancer therapy, and ecological modeling, is reflected in numerous high-impact publications in journals like Mathematical Biosciences, Journal of Mathematical Biology, and Physica A. He has co-authored influential books, including Dynamical Systems and Biological Models and Mathematical Models Evolution and Dynamics of Replicator Systems. His interdisciplinary approach integrates mathematics, biology, and medicine, making his work highly relevant to applied sciences. Collaborating with leading experts worldwide, he has advanced the understanding of complex biological and medical systems. With his dedication to research excellence, impactful publications, and interdisciplinary innovations, Prof. Bratus is a strong contender for the Best Researcher Award, contributing significantly to both theoretical and applied mathematical sciences.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Prof. Dr. Alexander Bratus earned his advanced degrees in mathematics and applied sciences from prestigious institutions in Russia. He pursued his Ph.D. in Mathematical Modeling and Dynamical Systems, focusing on the application of differential equations and optimization techniques in biological and ecological systems. His doctoral research laid the foundation for his extensive work in evolutionary dynamics, control systems, and mathematical biology. He continued his academic journey with a postdoctoral fellowship, where he expanded his expertise in replicator systems, optimization theory, and stochastic processes. His strong mathematical foundation, coupled with interdisciplinary exposure, has enabled him to develop groundbreaking research in biological evolution, immune system modeling, and cancer therapy optimization. Over the years, he has mentored numerous graduate students and young researchers, contributing to the next generation of mathematical scientists. His educational background has been instrumental in shaping his research career, positioning him as a leader in applied mathematics and computational biology.

Professional Experience

Prof. Dr. Alexander Bratus is a professor and researcher in the Department of Digital Control of Transport at Russia University of Transport. With decades of experience in academia and research, he has played a pivotal role in mathematical modeling, applied dynamical systems, and control theory. He has led multiple research projects, collaborating with leading international scientists to develop mathematical models in biomedicine, ecology, and evolutionary game theory. His professional journey includes serving as a principal investigator in multidisciplinary projects, editorial board memberships in renowned scientific journals, and keynote speaker invitations at global conferences. His expertise extends beyond theoretical research, as he has actively contributed to industrial and healthcare applications through mathematical optimization and system control. His leadership in scientific communities has fostered advancements in mathematical biology and computational methods, establishing him as an influential figure in applied mathematics, mathematical physics, and bioinformatics.

Research Interest

Prof. Dr. Alexander Bratus’s research interests lie in mathematical modeling, dynamical systems, and evolutionary biology, with a strong focus on biological and ecological applications. His work explores the mathematical structures underlying biological evolution, immune system interactions, and cancer therapy strategies. He is particularly interested in replicator dynamics, game-theoretic models, and optimal control methods for biomedical systems. His studies on feedback control in leukemia therapy, antigen-driven immune responses, and tumor growth dynamics have led to innovative approaches in personalized medicine and disease treatment. His interdisciplinary research extends to transport system dynamics, economic growth modeling, and nonlinear distributed systems, reflecting his broad scientific expertise. Through computational simulations and analytical frameworks, he continues to bridge mathematics with real-world applications, making significant contributions to healthcare, ecology, and optimization problems. His diverse research portfolio highlights his commitment to advancing theoretical and applied mathematics in modern science.

Awards and Honors

Throughout his career, Prof. Dr. Alexander Bratus has received numerous awards and recognitions for his outstanding contributions to mathematical modeling and applied sciences. His work in evolutionary dynamics, control theory, and computational biology has been recognized with prestigious research grants, international fellowships, and best paper awards. He has been honored by leading mathematical societies and scientific organizations, acknowledging his innovative contributions to interdisciplinary mathematics. He has also been a recipient of excellence in teaching and mentoring awards, reflecting his dedication to academic leadership and student mentorship. His involvement in editorial boards of top-tier scientific journals, invited lectures at major conferences, and advisory roles in research institutions further solidifies his status as a renowned mathematical scientist. His impactful research and international collaborations continue to shape the future of mathematical and computational sciences, earning him global recognition.

Conclusion

Prof. Dr. Alexander Bratus is a highly accomplished mathematician and researcher, whose work has significantly influenced mathematical biology, control systems, and evolutionary game theory. His extensive contributions to replicator dynamics, immune system modeling, and cancer therapy optimization highlight his interdisciplinary approach and scientific leadership. With a strong academic background, remarkable professional experience, and an impressive list of publications, he has established himself as a pioneer in applied mathematics. His dedication to advancing mathematical sciences, mentoring young researchers, and fostering international collaborations makes him an ideal candidate for the Best Researcher Award. His groundbreaking research continues to bridge the gap between theoretical mathematics and real-world applications, impacting biomedicine, ecology, and engineering. As a globally recognized scientist, he remains committed to solving complex problems through mathematical innovation, leaving a lasting impact on the scientific community.

Publications Top Noted

  • Title: Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis

    • Authors: A.S. Bratus’, G.A. Bocharov, D. Grebennikov

    • Year: 2024

    • Citations: 0

    • Source: Mathematics

  • Title: Food Webs and the Principle of Evolutionary Adaptation

    • Authors: A.S. Bratus’, S. Drozhzhin, A.V. Korushkina, A.S. Novozhilov

    • Year: 2024

    • Citations: 0

    • Source: Physica A: Statistical Mechanics and its Applications

  • Title: On a Hypercycle Equation with Infinitely Many Members

    • Authors: A.S. Bratus’, O.S. Chmereva, I.Y. Yegorov, A.S. Novozhilov

    • Year: 2023

    • Citations: 0

    • Source: Journal of Mathematical Analysis and Applications

  • Title: Existence of Closed Trajectories in Lotka-Volterra Systems in Rⁿ

    • Authors: A.S. Bratus’, V.V. Tikhomirov, R. Isaev

    • Year: Unknown

    • Citations: 0

    • Source: Book Chapter (No source information available)

  • Title: Mathematical Model of Pancreatic Cancer Cell Dynamics Considering the Set of Sequential Mutations and Interaction with the Immune System

    • Authors: A.S. Bratus’, N.R. Leslie, M. Chamo, G.A. Bocharov, D. Yurchenko

    • Year: 2022

    • Citations: 0

    • Source: Mathematics

  • Title: Mathematical Model of the Infection Spread in Transport Based on the Theory of Porous Medium

    • Authors: A. Ocheretyanaya, A.S. Bratus’

    • Year: 2022

    • Citations: 0

    • Source: Advances in Systems Science and Applications

  • Title: Open Quasispecies Systems: New Approach to Evolutionary Adaptation

    • Authors: I. Samokhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2022

    • Citations: 1

    • Source: Chinese Journal of Physics

  • Title: Fitness Optimization and Evolution of Permanent Replicator Systems

    • Authors: S. Drozhzhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2021

    • Citations: 2

    • Source: Journal of Mathematical Biology

  • Title: Dynamical Systems and Models in Biology

    • Authors: A.S. Bratus’, A.S. Novozhilov, A.P. Platonov

    • Year: 2010

    • Citations: 140

    • Source: Fizmatlit (in Russian)

  • Title: Optimal Bounded Control of Steady-State Random Vibrations

    • Authors: M.F. Dimentberg, D.V. Iourtchenko

    • Year: 2000

    • Citations: 64

    • Source: Probabilistic Engineering Mechanics

  • Title: Bounded Parametric Control of Random Vibrations

    • Authors: M.F. Dimentberg, A.S. Bratus’

    • Year: 2000

    • Citations: 54

    • Source: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

  • Title: Bimodal Solutions in Eigenvalue Optimization Problems

    • Authors: A.S. Bratus’, A.P. Seiranian

    • Year: 1983

    • Citations: 49

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko, M. Noori

    • Year: 2000

    • Citations: 44

    • Source: Dynamics and Control

  • Title: On Strategies on a Mathematical Model for Leukemia Therapy

    • Authors: A.S. Bratus’, E. Fimmel, Y. Todorov, Y.S. Semenov, F. Nuernberg

    • Year: 2012

    • Citations: 43

    • Source: Nonlinear Analysis: Real World Applications

  • Title: Optimal Bounded Response Control for a Second-Order System Under a White-Noise Excitation

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko

    • Year: 2000

    • Citations: 43

    • Source: Journal of Vibration and Control

  • Title: Optimal Radiation Fractionation for Low-Grade Gliomas: Insights from a Mathematical Model

    • Authors: T. Galochkina, A. Bratus, V.M. Pérez-García

    • Year: 2015

    • Citations: 33

    • Source: Mathematical Biosciences

  • Title: Optimal Control Synthesis in Therapy of Solid Tumor Growth

    • Authors: A.S. Bratus’, E.S. Chumerina

    • Year: 2008

    • Citations: 30

    • Source: Computational Mathematics and Mathematical Physics

  • Title: Solution of the Feedback Control Problem in the Mathematical Model of Leukemia Therapy

    • Authors: A. Bratus, Y. Todorov, I. Yegorov, D. Yurchenko

    • Year: 2013

    • Citations: 28

    • Source: Journal of Optimization Theory and Applications

  • Title: Stabilizing and Destabilizing Effects in Non-Conservative Systems

    • Authors: N.V. Banichuk, A.S. Bratus, A.D. Myshkis

    • Year: 1989

    • Citations: 26

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Linear Algebra of the Permutation Invariant Crow-Kimura Model of Prebiotic Evolution

    • Authors: A.S. Bratus, A.S. Novozhilov, Y.S. Semenov

    • Year: 2014

    • Citations: 25

    • Source: Mathematical Biosciences

 

 

Irek Gubaydullin | Mathematical Modeling | Best Researcher Award

Prof. Dr. Irek Gubaydullin | Mathematical Modeling | Best Researcher Award

Prof. Dr. Irek Gubaydullin at Institute of Petrochemistry and Catalysis – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia

Dr. Irek Marsovich Gubaydullin, born on May 21, 1959, is a distinguished Doctor of Physics and Mathematical Sciences and a Professor at the Institute of Petrochemistry and Catalysis, part of the Ufa Federal Research Centre of the Russian Academy of Sciences. He has authored over 300 scientific articles, with more than 100 indexed in international databases such as Web of Science and Scopus, including 17 in Q1 and Q2 quartiles. Dr. Gubaydullin holds over 30 certificates for computer program registrations and has supervised 8 PhD and 1 Doctoral thesis. He has also led 14 scientific research projects funded by the Russian National Science Foundation and the Russian Foundation for Basic Research. His key scientific contributions include developing computational systems for inverse problems in chemical kinetics, creating kinetic models for industrially significant reactions, and constructing mathematical models for mass transfer in fractured-pore type collectors. Dr. Gubaydullin’s work has significantly advanced the understanding and application of complex chemical processes, reflecting a profound commitment to scientific excellence.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Irek Marsovich Gubaydullin earned his Doctorate in Physics and Mathematical Sciences, establishing a robust foundation for his extensive research in chemical kinetics and mathematical modeling. His academic journey has been pivotal in his role as a professor at the Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences. Throughout his career, Dr. Gubaydullin has contributed significantly to the fields of computational chemistry and chemical engineering, authoring over 300 scientific articles and leading numerous research projects. His educational background has been instrumental in developing innovative methodologies and supervising emerging scholars in the scientific community.

Professional Experience

Dr. Irek Marsovich Gubaydullin, born on May 21, 1959, is a distinguished Doctor of Physics and Mathematical Sciences and a Professor at the Institute of Petrochemistry and Catalysis, a subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences. Throughout his illustrious career, Dr. Gubaydullin has authored over 300 scientific articles, with more than 100 indexed in international databases such as Web of Science and Scopus, including 17 in Q1 and Q2 quartiles. He holds over 30 certificates for computer program registrations, reflecting his significant contributions to computational methodologies in chemical kinetics and mass transfer modeling. As a mentor, he has supervised 8 PhD candidates and 1 doctoral thesis, fostering the next generation of scientists. Dr. Gubaydullin has also led 14 scientific research projects funded by the Russian National Science Foundation and the Russian Foundation for Basic Research, underscoring his leadership in advancing research in chemical kinetics, catalytic processes, and mathematical modeling.

Research Interest

Dr. Irek Marsovich Gubaydullin’s research interests are centered on the development of computational methods and mathematical models to solve complex problems in chemical kinetics and fluid dynamics. He has made significant contributions to the numerical modeling of piezoconductive processes in fractured-pore type reservoirs, employing finite difference methods to simulate fluid flow and heat transfer in porous media. His work also encompasses the reduction of chemical reaction mechanisms through sensitivity analysis, aiming to simplify complex chemical systems while maintaining accuracy. Additionally, Dr. Gubaydullin has explored the application of mathematical models in the optimization of chemical processes and the development of algorithms for selecting systems of horizontal wells in unconventional reservoirs. His interdisciplinary approach integrates principles from physics, chemistry, and mathematics to address challenges in petrochemical processes and reservoir engineering.

Award and Honor

Dr. Irek Marsovich Gubaydullin, born on May 21, 1959, is a distinguished Doctor of Physics and Mathematical Sciences and a Professor at the Institute of Petrochemistry and Catalysis, a subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences. Throughout his illustrious career, Dr. Gubaydullin has been recognized for his significant contributions to chemical kinetics and mathematical modeling. He has authored over 300 scientific articles, with more than 100 indexed in international databases such as Web of Science and Scopus, including 17 in Q1 and Q2 quartiles. Dr. Gubaydullin holds over 30 certificates for computer program registrations and has supervised 8 PhD and 1 Doctoral thesis. He has also led 14 scientific research projects funded by the Russian National Science Foundation and the Russian Foundation for Basic Research. His work has significantly advanced the understanding and application of complex chemical processes, reflecting a profound commitment to scientific excellence.

Conclusion

Dr. Irek Marsovich Gubaydullin is a distinguished researcher whose contributions to chemical kinetics, mathematical modeling, and computational methods have significantly impacted the fields of petrochemistry and catalysis. With over 300 scientific publications, including more than 100 indexed in Web of Science and Scopus, his research has demonstrated both depth and global relevance. His leadership in 14 scientific projects funded by prestigious research foundations, supervision of multiple PhD and doctoral theses, and development of novel methodologies for kinetic modeling, mass transfer analysis, and optimization of chemical reactions underscore his expertise and influence. His work in parallel computing, numerical algorithms, and catalyst regeneration has advanced industrial applications and theoretical frameworks alike. Dr. Gubaydullin’s dedication to scientific excellence, innovation, and mentorship solidifies his standing as a leading researcher. His groundbreaking contributions make him a highly deserving candidate for the Best Researcher Award, recognizing his lasting impact on science and technology.

Publications Top Noted

  • Title: Parallel Algorithms for Solving Mass Transfer Equations in the “Fracture Set – Matrix System”
    Authors: Ravil Uzyanbaev, Yury Poveshchenko, Viktoriia Podryga, Sergey Polyakov, Yuliya Bobreneva, Parvin Rahimly, Irek Gubaydullin
    Year: 2025
    Source: Book Chapter (Crossref)
  • Title: Numerical modeling of piezoconductive processes in a two-dimensional formulation for a fractured-pore type reservoir
    Authors: Ravil Munirovich Uzyanbaev, Yuliya Olegovna Bobreneva, Yuri Andreevich Poveschenko, Victoria Olegovna Podryga, Sergey Vladimirovich Polyakov, Irek Marsovich Gubaydullin
    Year: 2024
    Source: Keldysh Institute Preprints (Crossref)
  • Title: Parallel Algorithm for Calculating Two-Phase Filtration Processes in a Carbonate Reservoir in Plane Geometry
    Authors: Ravil M. Uzyanbaev, Yury A. Poveshchenko, Yuliya O. Bobreneva, Parvin I. Rahimly, Irek M. Gubaydullin
    Year: 2024
    Source: Book Chapter (Crossref)
  • Title: Numerical Modeling of Two-Phase Fluid Filtration for Carbonate Reservoir in Two-Dimensional Formulation
    Authors: Ravil M. Uzyanbaev, Yuliya O. Bobreneva, Yury A. Poveshchenko, Viktoriia O. Podryga, Sergey V. Polyakov, Parvin I. Rahimly, Irek M. Gubaydullin
    Year: 2024
    Source: Mathematics (Crossref)
  • Title: Averaging of the model of a chemical process in a catalyst layer with a spherical grain
    Authors: O.S. Yazovtseva, I.M. Gubaydullin, I.G. Lapshin
    Year: 2024
    Source: Numerical Methods and Programming (Crossref)
  • Title: Modeling of Chemical Processes Based on Parallel Computing for Multicore Systems
    Authors: Zagir Telyavgulov, Ilnur Akhmetov, Irek Gubaydullin
    Year: 2023
    Source: Book Chapter (Crossref)
  • Title: Using Parallel Technologies to Calculate Fluid Dynamic Processes in a Fractured-Porous Reservoir Taking into Account Non-isothermality
    Authors: Ravil M. Uzyanbaev, Yury A. Poveshchenko, Viktoriia O. Podryga, Sergey V. Polyakov, Yuliya O. Bobreneva, Parvin I. Rahimly, Irek M. Gubaydullin
    Year: 2023
    Source: Book Chapter (Crossref)
  • Title: A Kinetic Model of Catalytic Homocondensation of Acetone into Mesitylene
    Authors: V. Yu. Kirsanov, N. G. Grigor’eva, B. I. Kutepov, L. F. Korzhova, S. G. Karchevskii, A. A. Usmanova, K. F. Koledina, I. M. Gubaidullin
    Year: 2023
    Source: Petroleum Chemistry (Crossref)
  • Title: One Approach to Numerical Modeling of the Heat and Mass Transfers of Two-Phase Fluids in Fractured-Porous Reservoirs
    Authors: Yuliya O. Bobreneva, Yury Poveshchenko, Viktoriia O. Podryga, Sergey V. Polyakov, Ravil M. Uzyanbaev, Parvin I. Rahimly, Ainur A. Mazitov, Irek M. Gubaydullin
    Year: 2023
    Source: Mathematics (Crossref)
  • Title: Mathematical modeling of a multiphase flow in a single-pore reservoir
    Authors: Ainur Asgatovich Mazitov, Yuliya Olegovna Bobreneva, Irek Marsovich Gubaydullin, Yuri Andreevich Poveschenko
    Year: 2022
    Source: Keldysh Institute Preprints (Crossref)
  • Title: Parallel Computing in Solving the Problem of Interval Multicriteria Optimization in Chemical Kinetics
    Authors: Sergey Koledin, Kamila Koledina, Irek Gubaydullin
    Year: 2022
    Source: Book Chapter (Crossref)
  • Title: Parallel Algorithm for Calculating the Radius of Stability in Multicriteria Optimization Conditions for Catalytic Reforming of Gasoline
    Authors: Kamila Koledina, Sergey Koledin, Irek Gubaydullin
    Year: 2021
    Source: Book Chapter (Crossref)
  • Title: Pareto Frontier in Multicriteria Optimization of Chemical Processes Based on a Kinetic Model
    Authors: Kamila Koledina, Sergey Koledin, Irek Gubaydullin
    Year: 2021
    Source: Book Chapter (Crossref)
  • Title: Study of a mathematical model of gasoline catalytic reforming by sensitivity analysis methods
    Authors: L.F. Safiullina, K.F. Koledina, I.M. Gubaydullin, R.Z. Zainullin
    Year: 2020
    Source: Numerical Methods and Programming (Crossref)
  • Title: Forecast of water-cut at wells under design by machine learning methods
    Authors: Enikeev, M.R.; Fazlytdinov, M.F.; Enikeeva, L.V.; Gubaidullin, I.M.
    Year: 2019
    Source: CEUR Workshop Proceedings (Scopus – Elsevier)
  • Title: Kinetics and Mechanism of the Synthesis of Benzylbutyl Ether in the Presence of Copper-Containing Catalysts
    Authors: Koledina, K.F.; Gubaidullin, I.M.; Koledin, S.N.; Baiguzina, A.R.; Gallyamova, L.I.; Khusnutdinov, R.I.
    Year: 2019
    Source: Russian Journal of Physical Chemistry A (Scopus – Elsevier)
  • Title: Numerical analysis of gas flow dynamics of propane pyrolysis
    Authors: I. M. Gubaydullin, L. F. Nurislamova
    Year: 2018
    Source: Vestnik of Don State Technical University (Crossref)
  • Title: Numerical analysis of parameter identifiability for a mathematical model of a chemical reaction
    Authors: L.F. Nurislamova, I.M. Gubaydullin
    Year: 2018
    Source: Numerical Methods and Programming (Crossref)
  • Title: Analysis of corrosion process development on metals by means of computer vision
    Authors: Enikeev, M.; Gubaydullin, I.; Maleeva, M.
    Year: 2017
    Source: Engineering Journal (Scopus – Elsevier)
  • Title: Interplay of Conformational and Chemical Transformations of Ortho-Substituted Aromatic Nitroso Oxides: Experimental and Theoretical Study
    Authors: Chainikova, E.M.; Yusupova, A.R.; Khursan, S.L.; Teregulova, A.N.; Lobov, A.N.; Abdullin, M.F.; Enikeeva, L.V.; Gubaydullin, I.M.; Safiullin, R.L.
    Year: 2017
    Source: Journal of Organic Chemistry (Scopus – Elsevier)