Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Prof. Dr. Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Professor Emerita, Research Professor At New York University, United States

Prof. Dr. Marilyn E. Noz is a highly accomplished physicist and medical imaging researcher whose pioneering contributions have shaped the fields of nuclear medicine, radiation therapy optimization, and image fusion for cancer detection. Holding a Ph.D. in Physics from Fordham University, she has led impactful international collaborations with renowned institutions such as the Karolinska Institute in Sweden and secured major grants from the NIH and industry partners. Her extensive publications in leading journals and conferences, along with editorial roles for IEEE Transactions on Medical Imaging and Medical Physics, highlight her academic excellence. As a licensed Medical Physicist and Diplomate of multiple professional boards, she has combined expertise with leadership in global scientific societies. Widely recognized through prestigious awards, she continues to inspire innovation, education, and advancement in medical physics research.

Professional Profile

Google Scholar | Scopus Profile

Education

Prof. Dr. Marilyn E. Noz pursued her academic journey with distinction, earning a B.A. in Mathematics with Summa Cum Laude honors from Marymount College, followed by an M.S. and Ph.D. in Physics from Fordham University. Her solid foundation in mathematics and physics enabled her to build expertise at the intersection of science and medicine. Over the course of her education, she cultivated a deep interest in nuclear medicine, radiological sciences, and medical physics, which later became the driving force of her career. With a strong blend of theoretical knowledge and practical training, she combined rigorous physics principles with medical applications, setting the stage for groundbreaking contributions in medical imaging, radiation therapy, and cancer research. Her educational path reflects excellence, commitment, and a clear vision toward scientific advancement.

Experience

Prof. Dr. Marilyn E. Noz has served in prominent academic and medical institutions, shaping both education and clinical research in nuclear medicine and radiology. She began her career in physics instruction and steadily advanced to hold long-standing faculty positions at New York University School of Medicine, where she became Professor and later Professor Emerita in the Department of Radiology. Alongside teaching, she contributed as a physicist in leading hospitals, where her expertise was vital in advancing nuclear medicine practices. She also held adjunct and associate professor positions in physics departments, enriching the academic landscape with her teaching and mentorship. Her professional journey reflects a balance of academic leadership, hands-on research, and clinical involvement, making her one of the most influential figures in medical physics education and practice.

Research Interest

The research interests of Prof. Dr. Marilyn E. Noz span across nuclear medicine physics, medical imaging, radiation therapy, and cancer detection. A key area of her work has been in image fusion—integrating structural and functional imaging modalities to enhance diagnosis and optimize therapy. She has actively explored radiation therapy planning, multimodality visualization, and the use of radiolabeled antibodies for cancer treatment. Her collaborations with international institutes have enabled the translation of advanced imaging research into clinical practice, making her work highly impactful. She has also contributed to the study of craniofacial disorders through imaging analysis and pioneered computational approaches for medical image processing. Her research consistently bridges the gap between physics and medicine, with a vision to improve healthcare outcomes through innovation in imaging sciences.

Award and Honor

Prof. Dr. Marilyn E. Noz has received numerous awards and honors recognizing her outstanding contributions to medical physics and imaging research. She earned the Giovanni DiChiro Award for excellence in scientific publication and multiple Best Poster and Cum Laude Awards from prestigious scientific societies. Her work on CT/SPECT fusion received repeated recognition at international conferences, and her innovative contributions in computer-assisted tomography and image fusion placed her as a finalist in the ComputerWorld-Smithsonian Institute Awards. Additionally, she was honored with fellowships such as the National Defense Education Act Fellowship and the Fogarty International Research Fellowship, which supported her groundbreaking studies abroad. These distinctions highlight not only her scientific excellence but also her role as a global leader whose research achievements have advanced both clinical and academic communities.

Research Skill

Prof. Dr. Marilyn E. Noz possesses exceptional research skills in medical imaging, nuclear medicine physics, and computational analysis for clinical applications. Her expertise lies in multimodality image fusion, radiation therapy optimization, and advanced visualization techniques for cancer diagnosis and treatment planning. She has demonstrated strong proficiency in translating theoretical concepts into clinical tools, supported by her successful leadership in grant-funded projects with NIH, international research institutes, and industry partners. Her editorial contributions to leading journals reflect her analytical and evaluative abilities, while her involvement in interdisciplinary teams highlights collaboration and innovation. With skills ranging from experimental physics to applied medical technologies, she has consistently pushed the boundaries of imaging research. Her ability to combine technical precision, clinical impact, and academic leadership defines her as a true pioneer in the field.

Publication Top Notes

  • Title: Theory and applications of the Poincaré group
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2024
    Citation: 387

  • Title: Graphics applied to medical image registration
    Authors: GQ Maguire, ME Noz, H Rusinek, J Jaeger, EL Kramer, JJ Sanger, …
    Year: 1991
    Citation: 193

  • Title: Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience
    Authors: VS Lee, H Rusinek, ME Noz, P Lee, M Raghavan, EL Kramer
    Year: 2003
    Citation: 162

  • Title: Linear canonical transformations of coherent and squeezed states in the Wigner phase space
    Authors: D Han, YS Kim, ME Noz
    Year: 1988
    Citation: 110

  • Title: Stokes parameters as a Minkowskian four-vector
    Authors: D Han, YS Kim, ME Noz
    Year: 1997
    Citation: 103

  • Title: Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer
    Authors: CJ Schettino, EL Kramer, ME Noz, S Taneja, P Padmanabhan, H Lepor
    Year: 2004
    Citation: 96

  • Title: Principal axes and surface fitting methods for three-dimensional image registration
    Authors: H Rusinek, WH Tsui, AV Levy, ME Noz, MJ de Leon
    Year: 1993
    Citation: 96

  • Title: Constructing topologically connected surfaces for the comprehensive analysis of 3-D medical structures
    Authors: AD Kalvin, B Haddad, ME Noz
    Year: 1991
    Citation: 80

  • Title: Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets
    Authors: RJT Gorniak, EL Kramer, GQ Maguire Jr, ME Noz, CJ Schettino, …
    Year: 2003
    Citation: 55

  • Title: Three-dimensional movements of the lumbar spine facet joints and segmental movements: in vivo examinations of normal subjects with a new non-invasive method
    Authors: P Svedmark, T Tullberg, ME Noz, GQ Maguire Jr, MP Zeleznik, …
    Year: 2012
    Citation: 36

  • Title: Validation of a 3D CT method for measurement of linear wear of acetabular cups: a hip simulator study
    Authors: A Jedenmalm, F Nilsson, ME Noz, DD Green, UW Gedde, IC Clarke, …
    Year: 2011
    Citation: 36

  • Title: A new technique for diagnosis of acetabular cup loosening using computed tomography: preliminary experience in 10 patients
    Authors: H Olivecrona, L Olivecrona, L Weidenhielm, ME Noz, JK Hansen, …
    Year: 2008
    Citation: 29

  • Title: Interferometers and decoherence matrices
    Authors: D Han, YS Kim, ME Noz
    Year: 2000
    Citation: 29

  • Title: Mathematical Devices for Optical Sciences
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2019
    Citation: 21

Conclusion

Prof. Dr. Marilyn E. Noz represents a rare combination of academic excellence, research innovation, and global leadership in medical physics. Her contributions to nuclear medicine imaging, cancer detection, and radiation therapy optimization have significantly advanced the frontiers of healthcare and research. Through her international collaborations, editorial roles, and active participation in professional societies, she has influenced both scientific communities and clinical practice worldwide. Recognized with numerous awards and honors, she continues to inspire future generations of scientists and researchers. Her legacy lies not only in her research but also in her mentorship and dedication to education. With her unwavering commitment to advancing medical physics, Prof. Dr. Marilyn E. Noz remains a distinguished figure whose work has left a lasting impact on science and society.

Huihui Song | Mathematical Physics | Best Researcher Award

Prof. Huihui Song | Mathematical Physics | Best Researcher Award

Vice Dean at Harbin Institute of Technology (Weihai), China

Dr. Song Huihui is a distinguished professor, doctoral supervisor, and Associate Dean at the School of New Energy, Harbin Institute of Technology (Weihai). She is an esteemed member of several technical committees, including the IEEE PES China Technical Committee and the China Society for Electrical Engineering. Her research focuses on renewable energy integration, microgrid and smart grid control, and distributed power network technologies. She has led multiple national and provincial research projects, securing significant funding and contributing groundbreaking work in grid synchronization, energy storage, and zero-carbon village systems. Dr. Song has authored numerous high-impact SCI Q1 journal publications and an academic monograph. Her contributions have earned her prestigious national and provincial research awards, including the Science and Technology Progress Award. With her expertise in power system automation and energy control technologies, Dr. Song continues to drive innovation in the sustainable energy sector, shaping the future of smart and resilient power networks.

Professional Profile 

Scopus Profile

Education

Dr. Song Huihui holds a Ph.D. in electrical engineering, specializing in renewable energy integration and power system control. Her academic journey has been marked by rigorous training in energy systems, control mechanisms, and smart grid technologies. She has cultivated a deep understanding of distributed power networks, microgrid operation, and grid synchronization techniques. With a strong foundation in theoretical and applied research, she has developed expertise in optimizing large-scale renewable energy systems. Her education has been complemented by international collaborations, participation in high-profile research exchanges, and contributions to cutting-edge advancements in energy management. The knowledge and skills acquired during her doctoral and postdoctoral studies have laid the groundwork for her successful career in academia and research. Dr. Song’s academic achievements have enabled her to lead multiple national and international projects, mentor young researchers, and make significant contributions to the evolving landscape of sustainable energy technologies.

Professional Experience

Dr. Song Huihui is a professor, doctoral supervisor, and Associate Dean at the School of New Energy, Harbin Institute of Technology (Weihai). She has held key leadership roles in technical committees, including the IEEE PES China Technical Committee and the China Society for Electrical Engineering. With extensive experience in power system automation and renewable energy research, she has led numerous government-funded and industry-supported projects, addressing challenges in smart grid operation, distributed control, and energy storage. Dr. Song has collaborated with leading institutions and corporations, contributing to large-scale power system innovations and developing solutions for efficient grid integration of renewable energy sources. Her professional career spans academia, industrial partnerships, and policy-oriented research, making her a prominent figure in the field. She actively mentors graduate students, supervises doctoral research, and serves as a young editor for “Electric Power Construction,” furthering her impact on the next generation of energy researchers and professionals.

Research Interest

Dr. Song Huihui’s research focuses on large-scale renewable energy integration, microgrid and smart grid control, distributed energy systems, and energy storage technologies. She explores cutting-edge solutions for grid synchronization, rhythm-based power control, and intelligent control mechanisms to optimize energy networks. Her work emphasizes the development of advanced algorithms for decentralized power distribution, blockchain-enabled energy trading, and artificial intelligence applications in energy management. She is also actively involved in designing zero-carbon village models and multi-energy complementary systems for sustainable urban development. With an interdisciplinary approach, Dr. Song collaborates with researchers in electrical engineering, artificial intelligence, and environmental science to enhance the reliability and resilience of modern power grids. Her contributions to the field have resulted in high-impact publications in SCI Q1 journals, as well as patents and technological advancements that drive the future of smart and efficient energy networks.

Awards and Honors

Dr. Song Huihui has received numerous prestigious awards and honors in recognition of her contributions to energy research and technology development. She has been honored with the National First Prize for Science and Technology Progress by the China Safety Production Association and the China General Chamber of Commerce for her work on distributed photovoltaic microgrid safety systems. Additionally, she has received the Provincial First Prize for Science and Technology Innovation from Yunnan Province for her research on wind energy utilization in complex terrains. Her achievements extend beyond individual recognition, as her collaborative projects have been instrumental in shaping the future of renewable energy and grid stability. These accolades reflect her expertise, leadership, and dedication to advancing energy systems through innovative technologies. As a respected academic and researcher, Dr. Song continues to push the boundaries of sustainable energy solutions, earning national and international recognition for her pioneering work.

Conclusion

Dr. Song Huihui is a highly accomplished researcher, educator, and innovator in the field of renewable energy and power system automation. With a strong academic background, extensive professional experience, and groundbreaking research contributions, she has established herself as a leader in energy control technologies. Her work on grid synchronization, smart grid operations, and zero-carbon energy systems has made a significant impact on the industry and academia. Through her mentorship, publications, and leadership roles in technical committees, she continues to shape the future of sustainable energy. Her numerous awards and honors are a testament to her influence in the field. With an unwavering commitment to advancing energy technologies, Dr. Song is poised to further revolutionize smart and resilient power networks. Her work not only contributes to technological innovation but also plays a vital role in addressing global energy challenges and promoting sustainable development.

Publications Top Noted 

  • SmartGuard: An LLM-Enhanced Framework for Smart Contract Vulnerability Detection
    Authors: Hao Ding, Yizhou Liu, Xuefeng Piao, Huihui Song, Zhenzhou Ji
    Year: 2025
    Source: SSRN
    Link: papers.ssrn.com
  • Optimal Scheduling Strategy for Microgrid Considering the Support Capabilities of Grid Forming Energy Storage
    Authors: Zhibin Yan, Li Li, Peng Yang, Bin Che, Panlong Jin
    Year: 2025
    Source: Electric Power
    Link: mdpi.com

  • Energy-Shaping Control Strategy and Control Parameter Tuning of Cascaded H-Bridge Grid-Connected Inverter
    Authors: Chaodong Li, Manyuan Ye, Yan Ran, Huihui Song
    Year: 2025
    Source: Proceedings of the Chinese Society of Electrical Engineering
    Link: Springer Professional

  • Voltage Control Strategy of Grid Forming Parallel Inverters Based on Virtual Oscillator Control Under Islanded Mode
    Authors: Shitao Wang, Fangzheng Guo, Li Li, Huihui Song, Jingwei Li
    Year: 2025
    Source: Electric Power Automation Equipment
    Link: Nature

  • Energy Storage Configuration and Scheduling Strategy for Microgrid with Consideration of Grid-Forming Capability
    Authors: Zhibin Yan, Li Li, Weimin Wu, Bin Che, Panlong Jin
    Year: 2025
    Source: Electrical Engineering
    Link: Springer Professional

  • Distributed Secondary Control Strategy for the Islanded DC Microgrid Based on Virtual DC Machine Control
    Authors: Li Li, Zhiquan Wu, Haiyu Zhang, Lin Zhu, Huihui Song
    Year: 2025
    Source: Journal of Applied Science and Engineering
    Link: mdpi.com

  • A Fuzzy Hierarchical Selection Method for an Energy Storage Multi Scenario Interval Based on Maximum Evaluation Difference
    Authors: Caijuan Qi, Muyuan Li, Yichen Wu, Yi Wang, Huihui Song
    Year: 2024
    Source: Power System Protection and Control
    Link: Stet Review

  • Application of Energy Shaping Control in New Energy Systems

    • Authors: Song Huihui, Qu Yanbin, Hou Rui
    • Year: 2023
    • Source: Harbin Institute of Technology Press
  • Decentralized Secondary Frequency Control of Autonomous Microgrids via Adaptive Robust-Gain Performance

    • Authors: Jiayi Liu, Huihui Song*, Chenyue Chen, Josep M. Guerrero, Meng Liu, Yanbin Qu
    • Year: 2024
    • Source: IEEE Transactions on Smart Grid
  • Low-Frequency Oscillations in Coupled Phase Oscillators with Inertia

    • Authors: Song Huihui, Zhang Xuewei, Wu Jinfeng, Qu Yanbin
    • Year: 2019
    • Source: Scientific Reports (Nature.com)
  • Frequency Second Dip in Power Unreserved Control During Wind Power Rotational Speed Recovery

    • Authors: Liu Kangcheng, Qu Yanbin, Kim Hak-man, Song Huihui*
    • Year: 2017
    • Source: IEEE Transactions on Power Systems
  • A Blockchain-Enabled Trading Framework for Distributed Photovoltaic Power Using Federated Learning

    • Authors: Xuefeng Piao, Hao Ding, Huihui Song*, Meng Liu, Song Gao
    • Year: 2024
    • Source: International Journal of Energy Research
  • Global Stability Analysis for Coupled Control Systems and Its Application: Practical Aspects and Novel Control

    • Authors: Liu Jiayi, Jiang Shuaihao, Qu Yanbin, Zhang Xuewei, Song Huihui*
    • Year: 2021
    • Source: Journal of the Franklin Institute
  • Crowbar Resistance Value-Switching Scheme Conjoint Analysis Based on Statistical Sampling for LVRT of DFIG

    • Authors: Y.B. Qu, L. Gao, G.F. Ma, H.H. Song*, S.T. Wang
    • Year: 2019
    • Source: Journal of Modern Power Systems and Clean Energy
  • Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Oscillators System by Energy-Based Synchronization Control

    • Authors: Huaqiang Zhang, Xiangzhong Du, Jiayi Liu, Hak-Man Kim, Huihui Song*
    • Year: 2020
    • Source: Journal of the Franklin Institute
  • Global Stability Analysis for Coupled Control Systems and Its Application: Practical Aspects and Novel Control

    • Authors: Liu J., Jiang S., Qu Y., Zhang X.W., Song H.H.*
    • Year: 2021
    • Source: Journal of the Franklin Institute
  • Transient Stability Analysis and Enhanced Control Strategy for Andronov-Hopf Oscillator Based Inverters

    • Authors: Li Li, Huihui Song, Shitao Wang, Meng Liu, Song Gao, Haoyu Li, Josep M. Guerrero
    • Year: 2024
    • Source: IEEE Transactions on Energy Conversion