Mohammed Hussein | Applied Mathematics | Best Researcher Award

Prof. Mohammed Hussein | Applied Mathematics | Best Researcher Award

Academia at University of Baghdad, Iran

Dr. Mohammed Sabah Hussein is a distinguished Professor of Applied Mathematics at the University of Baghdad, College of Science, with a Ph.D. from the University of Leeds. With 18 years of teaching and research experience, his expertise spans inverse problems for heat equations, numerical analysis, fluid dynamics, and mathematical modeling. He has made significant contributions to academia, mentoring postgraduate students and serving in leadership roles, including Head of the Mathematics Department. Dr. Hussein has an impressive publication record in high-impact journals and actively participates in international research collaborations. His academic reputation is reflected in his H-index rankings across Google Scholar, Scopus, and Clarivate. As a member of several professional societies and editorial boards, he is dedicated to advancing applied mathematics. His technical proficiency in MATLAB, Mathematica, and LaTeX, coupled with his extensive research on solving complex mathematical problems, makes him a leading figure in his field.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Mohammed Sabah Hussein earned his Ph.D. in Applied Mathematics from the University of Leeds, where he specialized in inverse problems for heat equations and numerical analysis. Prior to that, he obtained his Master’s and Bachelor’s degrees in Mathematics from the University of Baghdad, demonstrating early excellence in mathematical modeling and computational techniques. His academic journey has been marked by a strong foundation in mathematical theories, which he later expanded through advanced research in applied mathematics and fluid dynamics. Throughout his education, Dr. Hussein actively engaged in research projects that enhanced his expertise in solving complex mathematical problems, particularly in heat transfer and differential equations. His exposure to international academic environments enriched his analytical skills and deepened his understanding of mathematical applications in real-world scenarios. His educational background continues to influence his teaching and research, enabling him to contribute significantly to mathematical sciences and mentor future scholars in applied mathematics.

Professional Experience

Dr. Mohammed Sabah Hussein is a Professor of Applied Mathematics at the University of Baghdad, College of Science, with 18 years of experience in teaching and research. He has held several academic leadership roles, including serving as Head of the Mathematics Department, where he played a crucial role in curriculum development and faculty mentoring. Over the years, he has supervised numerous postgraduate students, guiding them in advanced mathematical research. Dr. Hussein has collaborated with international institutions on cutting-edge research projects in applied mathematics, enhancing interdisciplinary studies. He has also served as a reviewer and editorial board member for prestigious mathematical journals, contributing to the peer-review process. His expertise in numerical methods, fluid dynamics, and inverse problems has led him to participate in global awards and workshops, where he shares his insights with the academic community. His commitment to research and education solidifies his standing as a leading mathematician.

Research Interest

Dr. Mohammed Sabah Hussein’s research focuses on inverse problems for heat equations, numerical analysis, fluid dynamics, and mathematical modeling. He specializes in solving complex differential equations that arise in real-world applications, particularly in heat transfer and fluid mechanics. His work extends to computational techniques using MATLAB and Mathematica, where he develops algorithms for accurate numerical solutions. Dr. Hussein is also interested in optimization methods and their applications in engineering and physical sciences. His research has contributed to advancements in thermal analysis and industrial processes, demonstrating the practical impact of applied mathematics. Additionally, he collaborates on interdisciplinary projects that integrate mathematics with physics and engineering, broadening the scope of mathematical applications. His publications in high-impact journals reflect his dedication to innovative mathematical research, and his continued exploration of numerical simulations and mathematical modeling ensures his contributions remain at the forefront of applied mathematics advancements.

Awards and Honors

Dr. Mohammed Sabah Hussein has received several prestigious awards and honors for his outstanding contributions to applied mathematics. His research excellence has been recognized with accolades from national and international academic institutions. He has been honored for his high-impact publications and has received grants for his work in mathematical modeling and numerical analysis. Dr. Hussein’s influence in academia is further demonstrated by his strong citation record and H-index rankings in Google Scholar, Scopus, and Clarivate. He has been invited as a keynote speaker at global awards and has received recognition for his mentorship of postgraduate students. His role in advancing mathematical sciences has been acknowledged through memberships in esteemed mathematical societies and editorial boards of reputed journals. These honors reflect his dedication to academic excellence and his influence on the broader mathematical research community.

Conclusion

Dr. Mohammed Sabah Hussein is a highly respected mathematician whose expertise in applied mathematics has significantly impacted academia and research. With a strong educational background and extensive professional experience, he has contributed to solving complex mathematical problems through advanced numerical analysis and modeling. His dedication to mentoring students, publishing high-impact research, and collaborating internationally highlights his commitment to the mathematical sciences. His awards and honors reflect his scholarly influence and contributions to mathematical research. As a professor, researcher, and mentor, Dr. Hussein continues to advance applied mathematics, ensuring its relevance in solving real-world challenges. His work in inverse problems, fluid dynamics, and computational methods cements his reputation as a leader in the field. Through his academic and research endeavors, he remains dedicated to pushing the boundaries of mathematical knowledge and inspiring future generations of mathematicians.

Publications Top Noted

1. Simultaneous determination of time-dependent coefficients in the heat equation

Authors: M. S. Hussein, D. Lesnic, M. I. Ivanchov
Year: 2014
Citations: 61
Source: Computers & Mathematics with Applications, 67(5), 1065-1091

2. An inverse problem of finding the time‐dependent diffusion coefficient from an integral condition

Authors: M. S. Hussein, D. Lesnic, M. I. Ismailov
Year: 2016
Citations: 49
Source: Mathematical Methods in the Applied Sciences, 39(5), 963-980

3. Reconstruction of time-dependent coefficients from heat moments

Authors: M. J. Huntul, D. Lesnic, M. S. Hussein
Year: 2017
Citations: 45
Source: Applied Mathematics and Computation, 301, 233-253

4. Simultaneous determination of time and space-dependent coefficients in a parabolic equation

Authors: M. S. Hussein, D. Lesnic
Year: 2016
Citations: 38
Source: Communications in Nonlinear Science and Numerical Simulation, 33, 194-217

5. Multiple time-dependent coefficient identification thermal problems with a free boundary

Authors: M. S. Hussein, D. Lesnic, M. I. Ivanchov, H. A. Snitko
Year: 2016
Citations: 37
Source: Applied Numerical Mathematics, 99, 24-50

6. Direct and inverse source problems for degenerate parabolic equations

Authors: M. S. Hussein, D. Lesnic, V. L. Kamynin, A. B. Kostin
Year: 2020
Citations: 35
Source: Journal of Inverse and Ill-Posed Problems, 28(3), 425-448

7. Simultaneous determination of time-dependent coefficients and heat source

Authors: M. S. Hussein, D. Lesnic
Year: 2016
Citations: 24
Source: International Journal for Computational Methods in Engineering Science and Mechanics

8. Identification of the time-dependent conductivity of an inhomogeneous diffusive material

Authors: M. S. Hussein, D. Lesnic
Year: 2015
Citations: 24
Source: Applied Mathematics and Computation, 269, 35-58

9. Determination of a time-dependent thermal diffusivity and free boundary in heat conduction

Authors: M. S. Hussein, D. Lesnic
Year: 2014
Citations: 23
Source: International Communications in Heat and Mass Transfer, 53, 154-163

10. Simultaneous Identification of Thermal Conductivity and Heat Source in the Heat Equation

Authors: M. J. Huntul, M. S. Hussein
Year: 2021
Citations: 20
Source: Iraqi Journal of Science, 1968-1978

11. A wavelet-based collocation technique to find the discontinuous heat source in inverse heat conduction problems

Authors: M. Ahsan, W. Lei, M. Ahmad, M. S. Hussein, Z. Uddin
Year: 2022
Citations: 16
Source: Physica Scripta, 97(12), 125208

12. Identification of a multi-dimensional space-dependent heat source from boundary data

Authors: M. S. Hussein, D. Lesnic, B. T. Johansson, A. Hazanee
Year: 2018
Citations: 16
Source: Applied Mathematical Modelling, 54, 202-220

13. Free boundary determination in nonlinear diffusion

Authors: M. S. Hussein, D. Lesnic, M. Ivanchov
Year: 2013
Citations: 16
Source: East Asian Journal on Applied Mathematics, 3(4), 295-310

14. Retrieval of Timewise Coefficients in the Heat Equation from Nonlocal Overdetermination Conditions

Authors: F. Anwer, M. S. Hussein
Year: 2022
Citations: 15
Source: Iraqi Journal of Science, 1184-1199

15. Numerical Solution to Recover Time-dependent Coefficient and Free Boundary from Nonlocal and Stefan Type Overdetermination Conditions in Heat Equation

Authors: M. Qassim, M. S. Hussein
Year: 2021
Citations: 15
Source: Iraqi Journal of Science, 62(3), 950-960

16. Determination of time-dependent coefficient in time fractional heat equation

Authors: Q. W. Ibraheem, M. S. Hussein
Year: 2023
Citations: 14
Source: Partial Differential Equations in Applied Mathematics, 7, 100492

17. Splitting the One-Dimensional Wave Equation, Part II: Additional Data are Given by an End Displacement Measurement

Authors: S. O. Hussein, M. S. Hussein
Year: 2021
Citations: 13
Source: Iraqi Journal of Science, 62(1), 233-239

18. Numerical Solution for Two-Sided Stefan Problem

Authors: M. S. Hussein, Z. Adil
Year: 2020
Citations: 12
Source: Iraqi Journal of Science, 61(2), 444-452

Aviv Gibali | Applied Mathematics | Best Researcher Award

Prof. Aviv Gibali | Applied Mathematics | Best Researcher Award

Researcher at Holon Institute of Technology, Israel

Dr. Aviv Gibali is a distinguished mathematician and researcher specializing in applied mathematics, optimization, and variational inequalities. He holds a Ph.D. from the Technion – Israel Institute of Technology and has completed postdoctoral studies at the Fraunhofer Institute for Industrial Mathematics in Germany. Currently serving as the Head of the Department of Applied Mathematics at HIT – Holon Institute of Technology, he has previously held leadership roles at ORT Braude College of Engineering. Dr. Gibali has made significant contributions through numerous scholarly publications, award presentations, and editorial positions in prestigious journals. His expertise spans optimization algorithms, superiorization techniques, and mathematical modeling with applications in science and engineering. Actively engaged in international collaborations and academic committees, he has also received multiple awards for his impactful research. His dedication to advancing mathematical methodologies and their real-world applications establishes him as a leading figure in the field.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Aviv Gibali holds a strong academic background in mathematics, with degrees from prestigious institutions. He earned his Ph.D. in Mathematics from the Technion – Israel Institute of Technology in 2012, where his doctoral research focused on algorithms for solving variational inequalities and their applications under the supervision of Prof. Simeon Reich and Prof. Yair Censor. Prior to that, he completed his M.Sc. in Mathematics at the University of Haifa in 2008, working on iterative algorithms for solving variational inequality problems under the guidance of Prof. Yair Censor. His academic journey began with a B.Sc. in Mathematics from the University of Haifa in 2005. Following his Ph.D., Dr. Gibali pursued postdoctoral research in optimization at the Fraunhofer Institute for Industrial Mathematics (ITWM) in Kaiserslautern, Germany, from 2012 to 2014. His educational foundation has equipped him with deep expertise in mathematical modeling, optimization, and computational algorithms.

Professional Experience

Dr. Aviv Gibali is an accomplished mathematician and researcher specializing in optimization, variational inequalities, and applied mathematics. He currently serves as the Head of the Department of Applied Mathematics at HIT – Holon Institute of Technology and holds the rank of Associate Professor. Previously, he was an Associate Professor and Head of the Mathematics Department at ORT Braude College of Engineering. Dr. Gibali completed his Ph.D. at The Technion – Israel Institute of Technology and pursued postdoctoral research at the Fraunhofer Institute for Industrial Mathematics in Germany. His extensive academic contributions include serving as an associate editor for multiple prestigious journals, organizing international awards, and collaborating with leading institutions worldwide. With numerous invited talks, scientific visits, and interdisciplinary research projects, he has significantly advanced the field of mathematical optimization. His expertise spans theoretical advancements and industrial applications, earning him multiple awards and recognition in applied and computational mathematics.

Research Interest

Dr. Aviv Gibali’s research interests lie at the intersection of applied mathematics, optimization, and computational methods, with a strong focus on projection algorithms, variational inequalities, and convex feasibility problems. His work spans both theoretical advancements and real-world applications, particularly in industrial mathematics, medical imaging, radiation therapy planning, and data science. He has made significant contributions to superiorization techniques, an innovative approach to improving iterative algorithms for constrained optimization problems. Dr. Gibali is also actively engaged in developing and analyzing numerical algorithms for large-scale optimization, leveraging mathematical modeling to solve complex problems in engineering, machine learning, and healthcare. His interdisciplinary collaborations with international research institutions and industry partners enhance the practical impact of his studies. With a keen interest in mathematical education, he also contributes to innovative pedagogical methods, fostering a new generation of researchers in applied and computational mathematics.

Award and Honor

Dr. Aviv Gibali, a distinguished mathematician and researcher, has been widely recognized for his outstanding contributions to applied mathematics and optimization. He has received numerous accolades, including the prestigious Fourth Most Cited Article Award from Optimization Methods and Software in 2021, highlighting the impact of his research. In 2020, he secured First Prize in the Hackathon on Free Writing Home Exams, organized by Tel-Aviv University and Shenkar, demonstrating his innovative approach to education. His scholarly excellence has also been acknowledged through esteemed fellowships such as the Mathematics for Industry Network’s Short-Term Scientific Mission (2018) in Germany and the Austria-Israel Academic Network Innsbruck (AIANI) Fellowship (2017). With an extensive academic career, editorial roles in leading journals, and significant contributions to industrial mathematics, Dr. Gibali’s work continues to shape the field, earning him widespread recognition and respect within the global mathematical community.

Conclusion

Dr. Aviv Gibali is a distinguished researcher in applied mathematics, with a prolific academic career spanning optimization, variational inequalities, and superiorization techniques. His extensive contributions include over a decade of impactful research, international collaborations, editorial roles in leading mathematical journals, and leadership positions in academia. As an associate professor and head of the Department of Applied Mathematics at HIT – Holon Institute of Technology, Dr. Gibali has played a pivotal role in advancing mathematical research and fostering industry-academic partnerships. His numerous scientific visits, award organizations, and editorial engagements reflect his dedication to global knowledge dissemination. Recognized with prestigious awards and citations, he has demonstrated excellence in both theoretical advancements and real-world applications. While his achievements are remarkable, continued exploration of interdisciplinary applications and mentorship initiatives could further enhance his academic influence. Dr. Gibali’s scholarly impact and leadership make him a highly deserving candidate for the Best Researcher Award.

Publications Top Noted

  • Multidimensional Evolution Effects on Non-Cooperative Strategic Games
    Authors: Shipra Singh, Aviv Gibali, Simeon Reich
    Year: 2024
    Source: Mathematics
  • Resolvent-Free Method for Solving Monotone Inclusions
    Authors: Yan Tang, Aviv Gibali
    Year: 2023
    Source: Axioms
  • Special Issue “Symmetry in Optimization and Control with Real-World Applications”
    Authors: Kok Lay Teo, Aviv Gibali, Yong Wu
    Year: 2022
    Source: Symmetry
  • New Self-Adaptive Inertial-Like Proximal Point Methods for the Split Common Null Point Problem
    Authors: Yan Tang, Yeyu Zhang, Aviv Gibali
    Year: 2021
    Source: Symmetry
  • Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications
    Authors: Shipra Singh, Aviv Gibali, Simeon Reich
    Year: 2021
    Source: Mathematics
  • An Analytic and Numerical Investigation of a Differential Game
    Authors: Aviv Gibali, Oleg Kelis
    Year: 2021
    Source: Axioms
  • Projected-Reflected Subgradient-Extragradient Method and Its Real-World Applications
    Authors: Aviv Gibali, O.S. Iyiola, Lanre Akinyemi, Yekini
    Year: 2021
    Source: Symmetry
  • A Symmetric FBF Method for Solving Monotone Inclusions
    Authors: Aviv Gibali, Yekini
    Year: 2020
    Source: Symmetry
  • Inertial Krasnoselskii–Mann Method in Banach Spaces
    Authors: Yekini Shehu, Aviv Gibali
    Year: 2020
    Source: Mathematics