Sohail Ahmad Khan | Applied Mathematics | Young Scientist Award

Dr. Sohail Ahmad Khan | Applied Mathematics | Young Scientist Award

Research Associate at Quaid I Azam University Islamabad, Pakistan

Dr. Sohail Ahmad Khan 🌍📘, a distinguished researcher from the Department of Mathematics at Quaid-i-Azam University, Islamabad, stands among the world’s Top 2% scientists as recognized by Stanford University 🌟📊. With a PhD in Applied Mathematics (2024) and over 127 ISI-indexed publications, his work in fluid mechanics and nanomaterial dynamics 💧🧪 has garnered global acclaim. Boasting an H-index of 30 and a cumulative impact factor exceeding 500 🔬📈, Dr. Khan is a prolific author and a dedicated reviewer for over 120 high-impact journals. His academic excellence has been honored with multiple international awards 🏅🌐, fellowships, and top-cited recognitions. As an organizer and contributor to major scientific forums, he consistently drives forward environmental and thermal engineering research 🌱🔥. Dr. Khan’s dedication, interdisciplinary expertise, and visionary leadership mark him as an outstanding contender for the Young Scientist Award 🏆🔍.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education 🎓📘

Dr. Sohail Ahmad Khan’s academic voyage began with a BSc in Mathematics & Physics from the University of Science and Technology, Bannu (2014), followed by an MSc (2017), MPhil (2019), and PhD in Applied Mathematics (2024) from Quaid-i-Azam University, Islamabad. His education reflects a deep-rooted passion for mathematical precision and applied problem-solving 🔍📐. Throughout his academic progression, Dr. Khan honed his expertise in fluid mechanics, nanomaterial dynamics, and nonlinear analysis, laying a solid foundation for a prolific research career. His consistent academic excellence earned him competitive fellowships at each level, reinforcing his stature as a devoted scholar. From foundational mechanics to advanced computational modeling, his scholastic path showcases an unwavering dedication to unraveling complex real-world phenomena through mathematical elegance 📊🔬.

Professional Experience 👨‍🏫💼

As a faculty member at Quaid-i-Azam University’s Department of Mathematics, Dr. Khan has played an instrumental role in shaping academic and research landscapes 🌐📚. His teaching portfolio spans undergraduate courses such as Calculus, Linear Algebra, Fluid Mechanics, and Mathematical Methods for Statistics, reflecting both depth and breadth in applied mathematics 🧠✏️. Beyond classroom instruction, he has actively participated in curriculum development, academic mentoring, and interdisciplinary collaboration. He’s also taken a leadership role in organizing several international conferences, promoting innovation and scholarly exchange across domains. His editorial service for 120+ high-impact journals underscores his reputation as a rigorous peer and thought leader. Dr. Khan’s professional engagements not only reflect his commitment to knowledge dissemination but also his pivotal role in nurturing the next generation of mathematicians and applied scientists 🌟📖.

Research Interests 🔬🧪

Dr. Sohail Ahmad Khan’s research pursuits orbit the intricate domains of fluid dynamics, nanomaterial science, thermal transport, and nonlinear partial differential equations 💧🌡️. His work primarily addresses real-world problems involving entropy generation, heat and mass transfer, magnetohydrodynamics, and radiative flow phenomena—topics critical to engineering, environmental science, and biophysics. His interdisciplinary flair merges applied mathematics with computational simulations, offering analytical solutions that bridge theory and practice 🧠💡. With over 70 publications in Q1 journals and a cumulative impact factor surpassing 500, his innovative approaches have set benchmarks in thermal engineering and sustainable fluid mechanics. Dr. Khan’s cutting-edge investigations not only advance mathematical frontiers but also contribute to addressing global challenges such as energy efficiency, climate impact, and biomedical transport systems 🌍💥.

Awards and Honors 🏅🌟

Dr. Khan’s excellence has been celebrated both nationally and internationally. Twice listed among the World’s Top 2% Scientists by Stanford University (2022, 2024) 🌍📊, he stands as a beacon of global impact. His accolades include the International Best Researcher Award, Young Scientist Award, and a prestigious Gold Medal for his PhD research in fluid mechanics 🥇🌀. He’s received the Chief Minister Education Endowment Scholarship, MPhil and PhD fellowships, and recognition for publishing top-cited articles in elite journals like ZAMM 📈📚. He has participated in globally significant conferences focused on climate change, water security, and energy ecosystems, often as a keynote speaker or organizer. These accolades underscore his scholarly brilliance, leadership, and sustained contribution to applied mathematical research. His honors not only validate his academic journey but inspire aspiring researchers to aim higher and pursue meaningful, high-impact inquiry 💫🔍.

Conclusion 🧾✅

Dr. Sohail Ahmad Khan exemplifies the spirit of innovation, academic rigor, and impactful research 🧠🏆. With a robust academic foundation, stellar research credentials, and numerous international accolades, he stands as an outstanding candidate for the Young Scientist Award. His influential work in applied mathematics, particularly fluid mechanics and nanomaterial modeling, addresses pressing scientific challenges and resonates across disciplines. Through mentoring, publication, and conference leadership, he continually uplifts the research ecosystem, both locally and globally 🌐📢. His remarkable scholarly output, collaborative ethos, and unwavering dedication to excellence position him not only as a formidable mathematician but also as a visionary leader in scientific advancement. In every dimension—education, research, service, and community engagement—Dr. Khan proves to be a paragon of academic excellence, richly deserving of recognition on the world stage 🏅🌍.

Publications Top Notes

🔬 TASA Formulation for Nonlinear Radiative Flow of Walter-B Nanoliquid Invoking Microorganism and Entropy Generation

Authors: T. Hayat, A. Razzaq, S.A. Khan, A. Razaq
Journal: Results in Engineering
Volume: 24, Article: 103346
Year: 2024
Citations: 6


☀️ Entropy Induced Flow Model for Solar Radiation Through Nanomaterials with Cubic Autocatalysis Reaction

Authors: A. Razaq, S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Magnetism and Magnetic Materials
Volume: 586, Article: 171172
Year: 2023
Citations: 6


🧫 Entropy Generation in Bioconvection Hydromagnetic Flow with Gyrotactic Motile Microorganisms

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Nanoscale Advances
Volume: 5(18), Pages: 4863–4872
Year: 2023
Citations: 6


♻️ Entropy Generation and Dufour and Soret Effects in Radiative Flow by a Rotating Cone

Authors: S.A. Khan, T. Hayat, A. Alsaedi, S. Momani
Journal: Physica Scripta
Volume: 96(2), Article: 025209
Year: 2020
Citations: 6


🌡️ Entropy Generated Nonlinear Mixed Convective Beyond Constant Characteristics Nanomaterial Wedge Flow

Authors: A. Razaq, T. Hayat, S.A. Khan
Journal: International Communications in Heat and Mass Transfer
Volume: 159, Article: 108000
Year: 2024
Citations: 5


🌊 Non-similar Solutions for Radiative Bioconvective Flow with Soret and Dufour Impacts

Authors: M.W. Ahmad, T. Hayat, A. Alsaedi, S.A. Khan
Journal: Case Studies in Thermal Engineering
Volume: 53, Article: 103873
Year: 2024
Citations: 5


🔥 Thermal Energy Transport in Nanomaterial Flow with Modified Heat and Mass Transfer Laws

Authors: T. Hayat, A. Razaq, S.A. Khan, M.A. Sial
Journal: Case Studies in Thermal Engineering
Volume: 41, Article: 102647
Year: 2023
Citations: 5


💡 Radiative Bioconvective Walter-B Nanoliquid Flow with Soret and Dufour Effects

Authors: S.A. Khan, A. Razaq, T. Hayat, A. Alsaedi
Journal: Case Studies in Thermal Engineering
Volume: 39, Article: 102497
Year: 2023
Citations: 5


⚙️ Non-Newtonian Bioconvection in Sutterby Nanoliquid with Thermal Fluctuations and Radiation

Authors: T. Hayat, A. Razaq, S.A. Khan
Journal: Case Studies in Thermal Engineering
Volume: 37, Article: 102271
Year: 2022
Citations: 5


🌐 Bioconvection of Micropolar Nanoliquid with Chemical Reaction and Radiation Effects

Authors: S.A. Khan, A. Razaq, T. Hayat, A. Alsaedi
Journal: Journal of Materials Research and Technology
Volume: 23, Pages: 2889–2901
Year: 2023
Citations: 4


 ⚡ Entropy Generation in Reactive Nanofluid Flow with Frictional Heating and Magnetic Force

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Physica Scripta
Volume: 96(2), Article: 025209
Year: 2020
Citations: 4


 🌀 Bioconvective Nanofluid Flow Through a Rotating Disk Under Joule Heating

Authors: T. Hayat, A. Alsaedi, S.A. Khan
Journal: Journal of Molecular Liquids
Volume: 324, Article: 114717
Year: 2021
Citations: 4


 💧 Analysis of Nanofluid Bioconvection in a Porous Medium with Joule Heating and Irreversibility

Authors: T. Hayat, S.A. Khan, A. Alsaedi
Journal: Journal of Molecular Liquids
Volume: 323, Article: 114617
Year: 2021
Citations: 4


 🧪 Bio-Convection of Micropolar Nanoliquid in a Porous Media with Thermophoresis and Soret Effects

Authors: S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Materials Research and Technology
Volume: 21, Pages: 2037–2047
Year: 2022
Citations: 3


 🔬 Entropy-Optimized Bio-Convective Flow of Nanofluid in a Porous Medium with Cattaneo–Christov Theory

Authors: T. Hayat, A. Alsaedi, S.A. Khan
Journal: International Journal of Heat and Mass Transfer
Volume: 180, Article: 121769
Year: 2021
Citations: 3


 🌡️ Heat Transfer Characteristics in Nanofluid Flow with Thermal Radiation and Activation Energy

Authors: S.A. Khan, A. Razaq, T. Hayat
Journal: Physica Scripta
Volume: 97(2), Article: 025213
Year: 2022
Citations: 3


 ⚗️ Micropolar Nanofluid Bioconvection Over a Stretching Sheet with Joule Heating and Chemical Reaction

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Case Studies in Thermal Engineering
Volume: 31, Article: 101815
Year: 2022
Citations: 3


 🔥 Thermal Radiation and Magnetohydrodynamics in Bioconvective Nanofluid Flow Through Porous Media

Authors: S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Molecular Liquids
Volume: 337, Article: 116453
Year: 2021
Citations: 3

Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Prof. Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Dr.Sci. at Institute for Informatics and Automation Problems NAS of Republic of Armenia

Professor Ashot Sergei Gevorkyan is a distinguished theoretical physicist and mathematician specializing in quantum physics, mathematical modeling, and complex dynamical systems. Serving as Head of Scientific Direction for Modeling of Multiscale Physical-Chemical Processes, he has significantly contributed to foundational quantum mechanics, quantum chaos, stochastic systems, and spin dynamics. With a PhD from Leningrad State University and a Doctor of Sciences from St. Petersburg State University, his career spans prestigious institutions across Armenia and Russia. Prof. Gevorkyan has led numerous international research projects, including INTAS and ISTC grants, and developed high-performance parallel algorithms for quantum simulations. His prolific publication record in leading journals like Foundations of Physics, Physics of Atomic Nuclei, and Particles highlights groundbreaking work on quantum vacuum, three-body systems, and self-organizing processes. A former editorial board member of the Journal of Computational Science (Elsevier), he continues to push the boundaries of quantum theory and computational modeling with remarkable depth and innovation.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Professor Ashot Gevorkyan earned his foundational education in theoretical physics and mathematics at the Leningrad State University, where he received his PhD in Physics and Mathematics in 1978. His doctoral work focused on nonlinear dynamical systems and quantum mechanics. He later earned the prestigious Doctor of Sciences degree in 1990 from the renowned St. Petersburg State University, cementing his expertise in the fields of quantum physics and applied mathematics. Throughout his academic journey, Prof. Gevorkyan has continually integrated rigorous mathematical frameworks with physical theory, demonstrating a strong interdisciplinary foundation. His academic background set the stage for decades of pioneering research at the interface of theoretical physics, stochastic dynamics, and computational modeling. In addition to his formal degrees, Prof. Gevorkyan has participated in numerous international workshops, advanced courses, and research collaborations, enriching his academic repertoire and keeping him at the forefront of contemporary physics and mathematical innovation.

Professional Experience

Prof. Ashot Gevorkyan has held a variety of prominent academic and research roles throughout his distinguished career. He began as a researcher at the Yerevan Physics Institute and later joined the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia, where he led groundbreaking work in theoretical modeling and computational physics. He also served as a professor at the State Engineering University of Armenia and collaborated internationally with institutions in Russia and across Europe. Currently, he is Head of the Scientific Direction for Modeling of Multiscale Physical-Chemical Processes. Prof. Gevorkyan has been a principal investigator in multiple large-scale international research projects under the auspices of INTAS, ISTC, and other funding bodies, focusing on quantum chaos, complex systems, and nonlinear dynamics. His leadership in scientific modeling and computational theory has earned him a reputation as a trailblazer in both academic and applied physics communities.

Research Interest

Prof. Ashot Gevorkyan’s research interests lie at the intersection of theoretical physics, quantum mechanics, and complex dynamical systems. He is particularly renowned for his work in quantum chaos, stochastic dynamics, and modeling of multiscale systems. His investigations explore the nature of quantum vacuum, self-organizing processes in quantum systems, and nonlinear spin dynamics in stochastic fields. He has also made notable advances in mathematical modeling using high-performance parallel computing to simulate many-body quantum systems and dissipative environments. His work often combines mathematical rigor with physical intuition, producing results that influence both theory and practical applications. Prof. Gevorkyan’s research portfolio extends to optical turbulence, quantum three-body problems, and fractal structures in open quantum systems. His cross-disciplinary approach has fostered collaborations across mathematics, physics, and computer science, contributing significantly to our understanding of complex physical phenomena and enabling new computational techniques in modern physics.

Award and Honor

Throughout his career, Prof. Ashot Gevorkyan has received numerous awards and honors recognizing his exceptional contributions to science. He has been honored by leading scientific institutions for his pioneering work in quantum theory and mathematical modeling. His projects have received support and recognition from international research programs such as INTAS (International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union) and ISTC (International Science and Technology Center), reflecting the global impact of his research. He has been invited to serve as a keynote speaker and visiting scientist at several prominent international conferences and workshops. Prof. Gevorkyan also served on the editorial board of the Journal of Computational Science (Elsevier), a role that underscores his status as a leading voice in the computational physics community. These accolades affirm his influence in shaping contemporary research across theoretical and applied physics.

Conclusion

Professor Ashot Gevorkyan stands as a luminary in the fields of theoretical physics and computational mathematics. His deep expertise in quantum systems, chaotic dynamics, and complex modeling has not only advanced fundamental science but also provided new computational tools for understanding nature’s most intricate processes. With a career spanning over four decades, he has demonstrated an unwavering commitment to scientific excellence through research, teaching, and international collaboration. His interdisciplinary work bridges theoretical insights with practical innovations, setting a high standard in modern scientific inquiry. Recognized both nationally and internationally, Prof. Gevorkyan continues to inspire the global scientific community through his profound intellect, visionary ideas, and groundbreaking publications. His legacy is defined by a lifelong pursuit of knowledge and a passion for decoding the complexities of the universe through mathematics and physics.

Publications Top Notes

  • Title: General Three-Body Problem in Conformal-Euclidean Space: New Properties of a Low-Dimensional Dynamical System
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2024
    Source: Particles, 2024

  • Title: Quantum Chromodynamics of the Nucleon in Terms of Complex Probabilistic Processes
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2024
    Citations: 1
    Source: Symmetry, 2024

  • Title: Time-Dependent 4D Quantum Harmonic Oscillator and Reacting Hydrogen Atom
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2023
    Citations: 1
    Source: Symmetry, 2023

  • Title: Theoretical and Numerical Study of Self-Organizing Processes in a Closed System Classical Oscillator and Random Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev, K.A. Movsesyan
    Year: 2022
    Citations: 2
    Source: Mathematics, 2022

  • Title: Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2021
    Citations: 3
    Source: Symmetry, 2021

  • Title: Gamma Radiation Production Using Channeled Positron Annihilation in Crystals
    Authors: A.S. Gevorkyan, K.B. Oganesyan, Y.V. Rostovtsev, G. Kurizki
    Year: 2015
    Citations: 61
    Source: Laser Physics Letters, 12(7), 076002

  • Title: Dielectric Permittivity Superlattice Formation
    Authors: G.A. Amatuni, A.S. Gevorkyan, S.G. Gevorkian, A.A. Hakobyan, K.B. Oganesyan, et al.
    Year: 2008
    Citations: 60
    Source: Laser Physics, 18, 608–620

  • Title: Statistical Properties of Random Environment of 1D Quantum N-Particles System in External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan
    Year: 2010
    Citations: 45
    Source: Physics of Atomic Nuclei, 73, 320–325

  • Title: A Disordered 1D Quantum N-Particle System in an Environment under the Influence of an External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan, G.O. Sargsyan, et al.
    Year: 2010
    Citations: 44
    Source: Physica Scripta, 2010 (T140), 014045

  • Title: Quantum-Mechanical Channel of Interactions Between Macroscopic Systems
    Authors: R.S. Sargsyan, G.G. Karamyana, A.S. Gevorkyan, A.Y. Khrennikov
    Year: 2010
    Citations: 22
    Source: AIP Conference Proceedings, 1232(1), 267

  • Title: Random Motion of Quantum Harmonic Oscillator – Thermodynamics of Nonrelativistic Vacuum
    Authors: A.V. Bogdanov, A.S. Gevorkyan, A.G. Grigoryan
    Year: 1999
    Citations: 20
    Source: AMS IP Studies in Advanced Mathematics, 13, 81–112

  • Title: Bioscope: New Sensor for Remote Evaluation of the Physiological State of Biological Systems
    Authors: R.S. Sargsyan, A.S. Gevorkyan, G.G. Karamyan, V.T. Vardanyan, et al.
    Year: 2011
    Citations: 15
    Source: Physical Properties of Nanosystems, 299–309

  • Title: Three Body Multichannel Scattering as a Model of Irreversible Quantum Mechanics
    Authors: A.V. Bogdanov, A.S. Gevorkyan
    Year: 1997
    Citations: 13
    Source: arXiv preprint, quant-ph/9712022

  • Title: Nonrelativistic Quantum Mechanics with Fundamental Environment
    Author: A.S. Gevorkyan
    Year: 2012
    Citations: 12
    Source: Theoretical Concepts of Quantum Mechanics, 161–187

  • Title: Retracted: New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System under the Influence of External Field
    Authors: A.S. Gevorkyan, C.K. Hu, S. Flach
    Year: 2010
    Citations: 12
    Source: Transactions on Computational Science VII, E1–E1

  • Title: Regular and Chaotic Quantum Dynamics in Atom-Diatom Reactive Collisions
    Authors: A.S. Gevorkyan, A.V. Bogdanov, G. Nyman
    Year: 2008
    Citations: 12
    Source: Physics of Atomic Nuclei, 71, 876–883

  • Title: Exactly Solvable Models of Stochastic Quantum Mechanics within the Framework of Langevin-Schroedinger Type Equations
    Author: A.S. Gevorkyan
    Year: 2004
    Citations: 11
    Source: Topics in Analysis and its Applications, 415–442

  • Title: A New Parallel Algorithm for Simulation of a Spin-Glass System on Scales of Space-Time Periods of an External Field
    Authors: A.S. Gevorkyan, A.G. Abadzhyan, G.S. Sukiasyan
    Year: 2011
    Citations: 10
    Source: Lab. of Information Technologies

 

Mohammed Hussein | Applied Mathematics | Best Researcher Award

Prof. Mohammed Hussein | Applied Mathematics | Best Researcher Award

Academia at University of Baghdad, Iran

Dr. Mohammed Sabah Hussein is a distinguished Professor of Applied Mathematics at the University of Baghdad, College of Science, with a Ph.D. from the University of Leeds. With 18 years of teaching and research experience, his expertise spans inverse problems for heat equations, numerical analysis, fluid dynamics, and mathematical modeling. He has made significant contributions to academia, mentoring postgraduate students and serving in leadership roles, including Head of the Mathematics Department. Dr. Hussein has an impressive publication record in high-impact journals and actively participates in international research collaborations. His academic reputation is reflected in his H-index rankings across Google Scholar, Scopus, and Clarivate. As a member of several professional societies and editorial boards, he is dedicated to advancing applied mathematics. His technical proficiency in MATLAB, Mathematica, and LaTeX, coupled with his extensive research on solving complex mathematical problems, makes him a leading figure in his field.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Mohammed Sabah Hussein earned his Ph.D. in Applied Mathematics from the University of Leeds, where he specialized in inverse problems for heat equations and numerical analysis. Prior to that, he obtained his Master’s and Bachelor’s degrees in Mathematics from the University of Baghdad, demonstrating early excellence in mathematical modeling and computational techniques. His academic journey has been marked by a strong foundation in mathematical theories, which he later expanded through advanced research in applied mathematics and fluid dynamics. Throughout his education, Dr. Hussein actively engaged in research projects that enhanced his expertise in solving complex mathematical problems, particularly in heat transfer and differential equations. His exposure to international academic environments enriched his analytical skills and deepened his understanding of mathematical applications in real-world scenarios. His educational background continues to influence his teaching and research, enabling him to contribute significantly to mathematical sciences and mentor future scholars in applied mathematics.

Professional Experience

Dr. Mohammed Sabah Hussein is a Professor of Applied Mathematics at the University of Baghdad, College of Science, with 18 years of experience in teaching and research. He has held several academic leadership roles, including serving as Head of the Mathematics Department, where he played a crucial role in curriculum development and faculty mentoring. Over the years, he has supervised numerous postgraduate students, guiding them in advanced mathematical research. Dr. Hussein has collaborated with international institutions on cutting-edge research projects in applied mathematics, enhancing interdisciplinary studies. He has also served as a reviewer and editorial board member for prestigious mathematical journals, contributing to the peer-review process. His expertise in numerical methods, fluid dynamics, and inverse problems has led him to participate in global awards and workshops, where he shares his insights with the academic community. His commitment to research and education solidifies his standing as a leading mathematician.

Research Interest

Dr. Mohammed Sabah Hussein’s research focuses on inverse problems for heat equations, numerical analysis, fluid dynamics, and mathematical modeling. He specializes in solving complex differential equations that arise in real-world applications, particularly in heat transfer and fluid mechanics. His work extends to computational techniques using MATLAB and Mathematica, where he develops algorithms for accurate numerical solutions. Dr. Hussein is also interested in optimization methods and their applications in engineering and physical sciences. His research has contributed to advancements in thermal analysis and industrial processes, demonstrating the practical impact of applied mathematics. Additionally, he collaborates on interdisciplinary projects that integrate mathematics with physics and engineering, broadening the scope of mathematical applications. His publications in high-impact journals reflect his dedication to innovative mathematical research, and his continued exploration of numerical simulations and mathematical modeling ensures his contributions remain at the forefront of applied mathematics advancements.

Awards and Honors

Dr. Mohammed Sabah Hussein has received several prestigious awards and honors for his outstanding contributions to applied mathematics. His research excellence has been recognized with accolades from national and international academic institutions. He has been honored for his high-impact publications and has received grants for his work in mathematical modeling and numerical analysis. Dr. Hussein’s influence in academia is further demonstrated by his strong citation record and H-index rankings in Google Scholar, Scopus, and Clarivate. He has been invited as a keynote speaker at global awards and has received recognition for his mentorship of postgraduate students. His role in advancing mathematical sciences has been acknowledged through memberships in esteemed mathematical societies and editorial boards of reputed journals. These honors reflect his dedication to academic excellence and his influence on the broader mathematical research community.

Conclusion

Dr. Mohammed Sabah Hussein is a highly respected mathematician whose expertise in applied mathematics has significantly impacted academia and research. With a strong educational background and extensive professional experience, he has contributed to solving complex mathematical problems through advanced numerical analysis and modeling. His dedication to mentoring students, publishing high-impact research, and collaborating internationally highlights his commitment to the mathematical sciences. His awards and honors reflect his scholarly influence and contributions to mathematical research. As a professor, researcher, and mentor, Dr. Hussein continues to advance applied mathematics, ensuring its relevance in solving real-world challenges. His work in inverse problems, fluid dynamics, and computational methods cements his reputation as a leader in the field. Through his academic and research endeavors, he remains dedicated to pushing the boundaries of mathematical knowledge and inspiring future generations of mathematicians.

Publications Top Noted

1. Simultaneous determination of time-dependent coefficients in the heat equation

Authors: M. S. Hussein, D. Lesnic, M. I. Ivanchov
Year: 2014
Citations: 61
Source: Computers & Mathematics with Applications, 67(5), 1065-1091

2. An inverse problem of finding the time‐dependent diffusion coefficient from an integral condition

Authors: M. S. Hussein, D. Lesnic, M. I. Ismailov
Year: 2016
Citations: 49
Source: Mathematical Methods in the Applied Sciences, 39(5), 963-980

3. Reconstruction of time-dependent coefficients from heat moments

Authors: M. J. Huntul, D. Lesnic, M. S. Hussein
Year: 2017
Citations: 45
Source: Applied Mathematics and Computation, 301, 233-253

4. Simultaneous determination of time and space-dependent coefficients in a parabolic equation

Authors: M. S. Hussein, D. Lesnic
Year: 2016
Citations: 38
Source: Communications in Nonlinear Science and Numerical Simulation, 33, 194-217

5. Multiple time-dependent coefficient identification thermal problems with a free boundary

Authors: M. S. Hussein, D. Lesnic, M. I. Ivanchov, H. A. Snitko
Year: 2016
Citations: 37
Source: Applied Numerical Mathematics, 99, 24-50

6. Direct and inverse source problems for degenerate parabolic equations

Authors: M. S. Hussein, D. Lesnic, V. L. Kamynin, A. B. Kostin
Year: 2020
Citations: 35
Source: Journal of Inverse and Ill-Posed Problems, 28(3), 425-448

7. Simultaneous determination of time-dependent coefficients and heat source

Authors: M. S. Hussein, D. Lesnic
Year: 2016
Citations: 24
Source: International Journal for Computational Methods in Engineering Science and Mechanics

8. Identification of the time-dependent conductivity of an inhomogeneous diffusive material

Authors: M. S. Hussein, D. Lesnic
Year: 2015
Citations: 24
Source: Applied Mathematics and Computation, 269, 35-58

9. Determination of a time-dependent thermal diffusivity and free boundary in heat conduction

Authors: M. S. Hussein, D. Lesnic
Year: 2014
Citations: 23
Source: International Communications in Heat and Mass Transfer, 53, 154-163

10. Simultaneous Identification of Thermal Conductivity and Heat Source in the Heat Equation

Authors: M. J. Huntul, M. S. Hussein
Year: 2021
Citations: 20
Source: Iraqi Journal of Science, 1968-1978

11. A wavelet-based collocation technique to find the discontinuous heat source in inverse heat conduction problems

Authors: M. Ahsan, W. Lei, M. Ahmad, M. S. Hussein, Z. Uddin
Year: 2022
Citations: 16
Source: Physica Scripta, 97(12), 125208

12. Identification of a multi-dimensional space-dependent heat source from boundary data

Authors: M. S. Hussein, D. Lesnic, B. T. Johansson, A. Hazanee
Year: 2018
Citations: 16
Source: Applied Mathematical Modelling, 54, 202-220

13. Free boundary determination in nonlinear diffusion

Authors: M. S. Hussein, D. Lesnic, M. Ivanchov
Year: 2013
Citations: 16
Source: East Asian Journal on Applied Mathematics, 3(4), 295-310

14. Retrieval of Timewise Coefficients in the Heat Equation from Nonlocal Overdetermination Conditions

Authors: F. Anwer, M. S. Hussein
Year: 2022
Citations: 15
Source: Iraqi Journal of Science, 1184-1199

15. Numerical Solution to Recover Time-dependent Coefficient and Free Boundary from Nonlocal and Stefan Type Overdetermination Conditions in Heat Equation

Authors: M. Qassim, M. S. Hussein
Year: 2021
Citations: 15
Source: Iraqi Journal of Science, 62(3), 950-960

16. Determination of time-dependent coefficient in time fractional heat equation

Authors: Q. W. Ibraheem, M. S. Hussein
Year: 2023
Citations: 14
Source: Partial Differential Equations in Applied Mathematics, 7, 100492

17. Splitting the One-Dimensional Wave Equation, Part II: Additional Data are Given by an End Displacement Measurement

Authors: S. O. Hussein, M. S. Hussein
Year: 2021
Citations: 13
Source: Iraqi Journal of Science, 62(1), 233-239

18. Numerical Solution for Two-Sided Stefan Problem

Authors: M. S. Hussein, Z. Adil
Year: 2020
Citations: 12
Source: Iraqi Journal of Science, 61(2), 444-452

DEEPA R | Computational Mathematics | Women Researcher Award

Dr. DEEPA R | Computational Mathematics | Women Researcher Award

Professor at Nehru Institute of Engineering and Technology, India

Dr. R. Deepa is a distinguished academic leader and researcher in Electronics and Communication Engineering with extensive expertise in next-generation communication systems, signal processing, and AI-driven healthcare. Serving as the Head of Academic Affairs and Director of IQAC, she has been instrumental in driving strategic accreditation, curriculum innovation, and research excellence. She has secured multiple research grants, holds patents in advanced sensor and medical technologies, and has an impressive portfolio of Q1 and Q2 journal publications. Her contributions extend to industry collaborations, editorial board memberships, and faculty upskilling programs. Recognized with prestigious awards, including the United Nations Award for Human Excellence in Education, Dr. Deepa actively mentors doctoral scholars and champions student entrepreneurship initiatives. With a forward-thinking approach, she continues to shape academic policies, foster interdisciplinary research, and bridge the gap between academia and industry, making a significant impact on education and technological advancements.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile 

Education

Dr. R. Deepa holds a Ph.D. in Information & Communication Engineering from Anna University, Chennai, awarded in March 2013. Her dissertation focused on “Certain Investigations on Power Allocation Schemes for Transmission of JPEG Compressed Images Using MIMO-OFDM Systems,” under the guidance of Dr. K. Baskaran. She earned her Master of Engineering (M.E.) in Communication Systems from PSG College of Technology, Coimbatore, in June 2002, where she worked on the implementation of a USB device controller for her thesis. She completed her Bachelor of Engineering (B.E.) in Electronics & Communication Engineering from Sri Ramakrishna Engineering College, Coimbatore, in March 2000, with a thesis on the speed control of a DC motor using fuzzy logic. Dr. Deepa’s strong academic foundation in communication systems, signal processing, and emerging technologies has paved the way for her extensive contributions to research, innovation, and academic leadership in higher education institutions.

Professional Experience

Dr. R. Deepa is a distinguished academician and researcher with extensive experience in electronics and communication engineering. Currently serving as the Head of Academics, Director of IQAC, and Professor at the Nehru Institute of Engineering and Technology, she has played a pivotal role in academic leadership, quality assurance, and curriculum innovation. With a career spanning over two decades, she has held key positions, including Professor & Head at Nehru Institute of Technology and Assistant Professor at Amrita Vishwa Vidyapeetham. Her expertise lies in strategic academic planning, research promotion, and skill development in AI, IoT, and Industry 4.0 technologies. She has been instrumental in fostering student engagement, industry collaboration, and entrepreneurship through initiatives like NGI-TBI and NewGen IEDC. Additionally, she has served as a mentor, consultant, and editorial board member, contributing significantly to institutional growth, research advancements, and the holistic development of students and faculty.

Research Interest

Dr. R. Deepa’s research interests span next-generation communication systems, signal processing algorithms, and AI-driven healthcare. Her work focuses on advancing MIMO-OFDM systems, adaptive power allocation, and channel equalization techniques to enhance wireless communication efficiency. She explores artificial intelligence applications in medical diagnostics, particularly in early detection of diseases such as skin cancer, cardiovascular conditions, and diabetic retinopathy. Her research also includes AI-driven predictive analytics for market trends, UAV-based beamforming optimization, and blockchain-based cybersecurity frameworks for IoT networks. With numerous publications in reputed journals, she has contributed significantly to the intersection of communication engineering and intelligent systems. Additionally, her patents and funded projects reflect her commitment to developing real-world solutions, including assistive devices for the visually impaired and AI-powered medical instruments. Through her multidisciplinary approach, Dr. Deepa aims to bridge technological advancements with societal impact, fostering innovation in healthcare, cybersecurity, and wireless communication.

Award and Honor

Dr. R. Deepa has been recognized for her outstanding contributions to academia, research, and innovation through numerous prestigious awards and honors. She received a United Nations Award for Human Excellence in Education and Humanitarian Works (2018) and the NGI Women Excellence Award (2024) for her exceptional leadership in education. Her dedication to research and innovation was acknowledged with multiple research grants, including ₹10 lakhs from the Ministry of Consumer Affairs, India (2024) and ₹2.5 lakhs from NewGEN IEDC, DST, New Delhi (2022) for her startup idea “INTELLILENS.” She was also honored as an Advanced Institute Ambassador under the Institute Innovation Council (2025) and serves as a mentor for the Coimbatore BIS Standards Club, Ministry of Consumer Affairs, India (2024). Additionally, she holds editorial positions in esteemed journals, including being an Editorial Board Member of Math Scientist Awards (2025) and an Editor for Inderscience Journal Special Issues (2016).

Conclusion

Dr. R. Deepa is a distinguished academician, researcher, and leader in electronics and communication engineering, with a strong commitment to academic excellence, research innovation, and institutional quality enhancement. Her extensive experience in academic governance, curriculum development, and research promotion has significantly contributed to the advancement of higher education. She has secured multiple research grants, published extensively in reputed journals, and actively contributed as an editor and reviewer for leading scientific publications. Her expertise in next-generation communication systems, AI-driven healthcare, and signal processing has led to impactful innovations, including patents and consultancy roles in industry collaborations. Dr. Deepa’s dedication to student development, skill enhancement, and fostering research culture is evident in her leadership of various institutional initiatives. With numerous accolades, including the United Nations Award for Human Excellence in Education, she continues to shape the future of academia with her visionary approach and unwavering commitment to excellence.

Publications Top Noted

  • Division Multiplexing System Using Arithmetic Optimization Algorithm
    • Authors: R Deepa, R Karthick, J Velusamy, R Senthilkumar
    • Year: 2025
    • Citations: 31
  • Study of Spatial Diversity Schemes in Multiple Antenna Systems
    • Authors: R Deepa, K Baskaran, P Unnikrishnan, A Kumar
    • Year: 2009
    • Citations: 20
  • Healthcare’s New Frontier: AI-driven Early Cancer Detection for Improved Well-being
    • Authors: R Deepa, S Arunkumar, V Jayaraj, A Sivasamy
    • Year: 2023
    • Citations: 8
  • Patient Counselling at Aravind Eye Hospital
    • Authors: R Deepa, P Pradhan
    • Year: 2002
    • Citations: 8
  • Advancements in Early Detection of Diabetes and Diabetic Retinopathy Screening Using Artificial Intelligence
    • Authors: DAS Dr. R. Deepa
    • Year: 2023
    • Citations: 7
  • Performance Analysis of Decoding Algorithms in Multiple Antenna Systems
    • Authors: I Ammu, R Deepa
    • Year: 2011
    • Citations: 6
  • Performance of Possible Combinations of Detection Schemes with V-BLAST for MIMO OFDM Systems
    • Authors: R Deepa, S Iswarya, G DivyaShri, P MahathiKeshav, P JaganyaVasan
    • Year: IEEE
    • Citations: 6
  • MIMO Based Efficient JPEG Image Transmission and Reception by Multistage Receivers
    • Authors: R Deepa, K Baskaran
    • Year: 2010
    • Citations: 5
  • Early Detection of Skin Cancer Using AI: Deciphering Dermatology Images for Melanoma Detection
    • Authors: Dr. Deepa Rangasamy
    • Year: 2024
    • Citations: 3