Enrique González | Mathematical Physics | Best Researcher Award

Assist. Prof. Dr. Enrique González | Mathematical Physics | Best Researcher Award

Associate professor at National University of Córdoba, Argentina

Assist. Prof. Dr. Enrique Ramón González is a distinguished physicist specializing in nuclear physics, gamma spectrometry, Monte Carlo simulations, and radiation detection, with strong expertise in environmental radioactivity and material characterization. He earned his Ph.D. in Physics from the National University of Córdoba and currently serves as Assistant Professor at FAMAF, where he actively combines research and teaching. His scholarly contributions include numerous publications in reputed journals such as Applied Radiation and Isotopes and Journal of Materials Science Research and Reviews, alongside presentations at leading international and national scientific meetings. Dr. González has participated in several research projects with a focus on environmental monitoring and advanced methods in radiation studies, demonstrating his commitment to both academic excellence and societal impact. His ongoing work reflects a balance of innovation, collaboration, and leadership in the scientific community.

Professional Profile

Google Scholar | Scopus Profile

Education

Assist. Prof. Dr. Enrique Ramón González pursued his academic path in physics with dedication and excellence. He completed his Licentiate Degree in Physics at the Faculty of Mathematics, Astronomy, Physics and Computing (FAMAF), National University of Córdoba, where he later obtained his Ph.D. in Physics with research focused on radiation detection, gamma spectrometry, and Monte Carlo simulations. His education provided him with a solid foundation in nuclear physics, experimental techniques, and computational methods, equipping him to address complex scientific problems. Throughout his academic journey, he has consistently demonstrated a balance between theoretical understanding and practical application. His advanced training not only strengthened his expertise in radiation and environmental physics but also prepared him to become a mentor, researcher, and educator within the global scientific community.

Experience

Dr. Enrique González has accumulated extensive academic and research experience across teaching, collaborative projects, and scientific presentations. He has served as a teaching assistant and later as Assistant Professor at the National University of Córdoba, where he has taught core physics subjects such as General Physics, Modern Physics, and specialized courses on radiation interaction with matter. Beyond his teaching, he has played an important role in research groups working on environmental radioactivity, material characterization, and nuclear spectroscopy, contributing to both national and international projects. His experience includes presenting at numerous scientific congresses, symposia, and meetings of the Argentine Physics Association, where he has shared innovative research findings. This combination of academic teaching, research activity, and professional collaborations highlights his well-rounded contribution to physics and education.

Research Interest

Dr. González’s research interests are centered on nuclear physics, gamma spectrometry, and the application of Monte Carlo simulations in radiation detection and measurement. He focuses on advancing methods for the analysis of radioactive spectra, gamma coincidence studies, and the determination of naturally occurring radioactivity in environmental samples. His work also extends to the study of radiation transport, detector calibration, and metrology of radionuclides, addressing both theoretical frameworks and experimental designs. A strong area of interest is environmental radioactivity, particularly in evaluating soil, food, and water samples for radiation levels, supporting sustainable practices and public safety. Additionally, he explores advanced material characterization through spectroscopy and computational modeling, demonstrating a deep interest in connecting fundamental research with practical applications for society and environmental care.

Awards and Honors

Dr. Enrique González has gained recognition within the scientific community through his impactful research contributions, peer-reviewed publications, and active involvement in international symposia and academic meetings. His participation in awarded projects such as environmental monitoring and advanced radiation analysis reflects the value and credibility of his research. These collaborative projects, supported by academic institutions, underline his role in addressing critical scientific and environmental challenges. His work published in reputed journals, including Applied Radiation and Isotopes, stands as a testament to his scholarly excellence and technical innovation. The honors associated with his contributions highlight his ability to integrate theory with applied science, creating a meaningful impact on both academia and society. His career achievements position him as a respected figure in nuclear and radiation physics.

Research Skill

Dr. González possesses a wide range of advanced research skills in the field of nuclear and radiation physics. He is proficient in gamma spectrometry, Monte Carlo simulations for radiation transport, detector calibration, and analysis of complex radioactive spectra. His expertise includes working with simulation codes such as PENELOPE and MCNP5, alongside programming knowledge in Fortran and Python for scientific modeling. Skilled in data analysis and computational methods, he integrates theoretical models with experimental designs to achieve accurate results. He also demonstrates expertise in spectroscopic techniques applied to both environmental and material science research. His skills extend to academic writing, conference presentations, and collaboration in multidisciplinary projects. This versatile skill set highlights his ability to adapt, innovate, and contribute significantly to scientific advancements and applied research.

Publication Top Notes

  • Title: A DFT study of ZnO, Al2O3 and SiO2; combining X-ray spectroscopy, chemical bonding and Wannier functions
    Authors: GB Grad, ER González, J Torres-Díaz, EV Bonzi
    Year: 2022
    Citation: 12

  • Title: A methodology to determine natural radioactivity by γ spectrometry without using calibrated standard samples
    Authors: ER González, RT Mainardi, GB Grad, EV Bonzi
    Year: 2017
    Citation: 4

  • Title: Influence of the sample density in γ spectrometry
    Authors: ER González, GB Grad, EV Bonzi
    Year: 2019
    Citation: 2

  • Title: Analysis of electronic structure and X-ray absorption and emission spectra in MgO within the FP-LAPW method
    Authors: GB Grad, E González, J Torres Díaz, E Bonzi
    Year: 2018
    Citation: 2

  • Title: Determinación de K-40 en alimentos por espectrometría gamma con un detector de NaI (Tl) y simulaciones Monte Carlo
    Authors: ER González, EV Bonzi
    Year: 2012
    Citation: 1

  • Title: Determination of the coincidence summing gamma spectrum of a 60Co source by Monte Carlo simulations taking into account the angular correlation γ-γ
    Authors: ER González
    Year: 2025

  • Title: Desarrollo de un método basado en simulación Monte Carlo para el cálculo y análisis de espectros gamma complejos, sin el uso de fuentes de referencia
    Authors: ER González
    Year: 2019

  • Title: Determination of K-40 in foods by gamma spectrometry with a NaI (Tl) detector and Monte Carlo simulations
    Authors: ER González, EV Bonzi
    Year: 2011

  • Title: Analytical and Monte Carlo calculations of the radiation emitted from a cylindrical radioactive sample
    Authors: RT Mainardi, ER González, EV Bonzi
    Year: 2007

Conclusion

Assist. Prof. Dr. Enrique Ramón González exemplifies the qualities of a dedicated researcher, teacher, and innovator in nuclear physics and radiation studies. His career reflects a balance of academic teaching, research productivity, and international collaboration, making him a valuable contributor to both science and society. His expertise in gamma spectrometry, Monte Carlo simulations, and environmental radioactivity has led to meaningful advancements in the field, while his participation in research projects demonstrates his commitment to addressing global challenges. With a strong publication record, consistent conference engagement, and leadership in collaborative studies, Dr. González stands out as a researcher who bridges theory and practice. His future potential lies in expanding international partnerships, publishing in leading journals, and continuing to mentor the next generation of physicists.

Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Prof. Dr. Marilyn E. Noz | Mathematical Physics | Best Researcher Award

Professor Emerita, Research Professor At New York University, United States

Prof. Dr. Marilyn E. Noz is a highly accomplished physicist and medical imaging researcher whose pioneering contributions have shaped the fields of nuclear medicine, radiation therapy optimization, and image fusion for cancer detection. Holding a Ph.D. in Physics from Fordham University, she has led impactful international collaborations with renowned institutions such as the Karolinska Institute in Sweden and secured major grants from the NIH and industry partners. Her extensive publications in leading journals and conferences, along with editorial roles for IEEE Transactions on Medical Imaging and Medical Physics, highlight her academic excellence. As a licensed Medical Physicist and Diplomate of multiple professional boards, she has combined expertise with leadership in global scientific societies. Widely recognized through prestigious awards, she continues to inspire innovation, education, and advancement in medical physics research.

Professional Profile

Google Scholar | Scopus Profile

Education

Prof. Dr. Marilyn E. Noz pursued her academic journey with distinction, earning a B.A. in Mathematics with Summa Cum Laude honors from Marymount College, followed by an M.S. and Ph.D. in Physics from Fordham University. Her solid foundation in mathematics and physics enabled her to build expertise at the intersection of science and medicine. Over the course of her education, she cultivated a deep interest in nuclear medicine, radiological sciences, and medical physics, which later became the driving force of her career. With a strong blend of theoretical knowledge and practical training, she combined rigorous physics principles with medical applications, setting the stage for groundbreaking contributions in medical imaging, radiation therapy, and cancer research. Her educational path reflects excellence, commitment, and a clear vision toward scientific advancement.

Experience

Prof. Dr. Marilyn E. Noz has served in prominent academic and medical institutions, shaping both education and clinical research in nuclear medicine and radiology. She began her career in physics instruction and steadily advanced to hold long-standing faculty positions at New York University School of Medicine, where she became Professor and later Professor Emerita in the Department of Radiology. Alongside teaching, she contributed as a physicist in leading hospitals, where her expertise was vital in advancing nuclear medicine practices. She also held adjunct and associate professor positions in physics departments, enriching the academic landscape with her teaching and mentorship. Her professional journey reflects a balance of academic leadership, hands-on research, and clinical involvement, making her one of the most influential figures in medical physics education and practice.

Research Interest

The research interests of Prof. Dr. Marilyn E. Noz span across nuclear medicine physics, medical imaging, radiation therapy, and cancer detection. A key area of her work has been in image fusion—integrating structural and functional imaging modalities to enhance diagnosis and optimize therapy. She has actively explored radiation therapy planning, multimodality visualization, and the use of radiolabeled antibodies for cancer treatment. Her collaborations with international institutes have enabled the translation of advanced imaging research into clinical practice, making her work highly impactful. She has also contributed to the study of craniofacial disorders through imaging analysis and pioneered computational approaches for medical image processing. Her research consistently bridges the gap between physics and medicine, with a vision to improve healthcare outcomes through innovation in imaging sciences.

Award and Honor

Prof. Dr. Marilyn E. Noz has received numerous awards and honors recognizing her outstanding contributions to medical physics and imaging research. She earned the Giovanni DiChiro Award for excellence in scientific publication and multiple Best Poster and Cum Laude Awards from prestigious scientific societies. Her work on CT/SPECT fusion received repeated recognition at international conferences, and her innovative contributions in computer-assisted tomography and image fusion placed her as a finalist in the ComputerWorld-Smithsonian Institute Awards. Additionally, she was honored with fellowships such as the National Defense Education Act Fellowship and the Fogarty International Research Fellowship, which supported her groundbreaking studies abroad. These distinctions highlight not only her scientific excellence but also her role as a global leader whose research achievements have advanced both clinical and academic communities.

Research Skill

Prof. Dr. Marilyn E. Noz possesses exceptional research skills in medical imaging, nuclear medicine physics, and computational analysis for clinical applications. Her expertise lies in multimodality image fusion, radiation therapy optimization, and advanced visualization techniques for cancer diagnosis and treatment planning. She has demonstrated strong proficiency in translating theoretical concepts into clinical tools, supported by her successful leadership in grant-funded projects with NIH, international research institutes, and industry partners. Her editorial contributions to leading journals reflect her analytical and evaluative abilities, while her involvement in interdisciplinary teams highlights collaboration and innovation. With skills ranging from experimental physics to applied medical technologies, she has consistently pushed the boundaries of imaging research. Her ability to combine technical precision, clinical impact, and academic leadership defines her as a true pioneer in the field.

Publication Top Notes

  • Title: Theory and applications of the Poincaré group
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2024
    Citation: 387

  • Title: Graphics applied to medical image registration
    Authors: GQ Maguire, ME Noz, H Rusinek, J Jaeger, EL Kramer, JJ Sanger, …
    Year: 1991
    Citation: 193

  • Title: Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience
    Authors: VS Lee, H Rusinek, ME Noz, P Lee, M Raghavan, EL Kramer
    Year: 2003
    Citation: 162

  • Title: Linear canonical transformations of coherent and squeezed states in the Wigner phase space
    Authors: D Han, YS Kim, ME Noz
    Year: 1988
    Citation: 110

  • Title: Stokes parameters as a Minkowskian four-vector
    Authors: D Han, YS Kim, ME Noz
    Year: 1997
    Citation: 103

  • Title: Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer
    Authors: CJ Schettino, EL Kramer, ME Noz, S Taneja, P Padmanabhan, H Lepor
    Year: 2004
    Citation: 96

  • Title: Principal axes and surface fitting methods for three-dimensional image registration
    Authors: H Rusinek, WH Tsui, AV Levy, ME Noz, MJ de Leon
    Year: 1993
    Citation: 96

  • Title: Constructing topologically connected surfaces for the comprehensive analysis of 3-D medical structures
    Authors: AD Kalvin, B Haddad, ME Noz
    Year: 1991
    Citation: 80

  • Title: Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets
    Authors: RJT Gorniak, EL Kramer, GQ Maguire Jr, ME Noz, CJ Schettino, …
    Year: 2003
    Citation: 55

  • Title: Three-dimensional movements of the lumbar spine facet joints and segmental movements: in vivo examinations of normal subjects with a new non-invasive method
    Authors: P Svedmark, T Tullberg, ME Noz, GQ Maguire Jr, MP Zeleznik, …
    Year: 2012
    Citation: 36

  • Title: Validation of a 3D CT method for measurement of linear wear of acetabular cups: a hip simulator study
    Authors: A Jedenmalm, F Nilsson, ME Noz, DD Green, UW Gedde, IC Clarke, …
    Year: 2011
    Citation: 36

  • Title: A new technique for diagnosis of acetabular cup loosening using computed tomography: preliminary experience in 10 patients
    Authors: H Olivecrona, L Olivecrona, L Weidenhielm, ME Noz, JK Hansen, …
    Year: 2008
    Citation: 29

  • Title: Interferometers and decoherence matrices
    Authors: D Han, YS Kim, ME Noz
    Year: 2000
    Citation: 29

  • Title: Mathematical Devices for Optical Sciences
    Authors: S Başkal, YS Kim, ME Noz
    Year: 2019
    Citation: 21

Conclusion

Prof. Dr. Marilyn E. Noz represents a rare combination of academic excellence, research innovation, and global leadership in medical physics. Her contributions to nuclear medicine imaging, cancer detection, and radiation therapy optimization have significantly advanced the frontiers of healthcare and research. Through her international collaborations, editorial roles, and active participation in professional societies, she has influenced both scientific communities and clinical practice worldwide. Recognized with numerous awards and honors, she continues to inspire future generations of scientists and researchers. Her legacy lies not only in her research but also in her mentorship and dedication to education. With her unwavering commitment to advancing medical physics, Prof. Dr. Marilyn E. Noz remains a distinguished figure whose work has left a lasting impact on science and society.

Md Saddam Hussain | Mathematical Physics | Best Researcher Award

Dr. Md Saddam Hussain | Mathematical Physics | Best Researcher Award

Postdoctoral fellow at Zhejiang university of Technology, China

Dr. Md Saddam Hussain, Postdoctoral Fellow at the Institute of Theoretical Physics and Cosmology, Zhejiang University of Technology, China, is a distinguished researcher in cosmology, gravitational physics, and quantum field theory. He earned his Ph.D. in Physics from IIT Kanpur, following advanced studies at IIT Guwahati and Jamia Millia Islamia. His research focuses on dark energy, dark matter, and scalar field interactions, resulting in numerous publications in high-impact journals such as JCAP, Physical Review D, and Chinese Journal of Physics. Actively engaged in international collaborations across China, the USA, and Europe, he has presented at leading conferences and contributed to global research initiatives. With expertise in high-performance computing for cosmological modeling and a strong teaching record, Dr. Hussain continues to drive impactful advancements in theoretical physics.

Professional Profile

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Md Saddam Hussain holds a Ph.D. in Physics from the Indian Institute of Technology Kanpur, where he specialized in cosmology and gravitational physics. He earned his M.Sc. in Physics from the Indian Institute of Technology Guwahati, focusing on general relativity and quantum field theory, and completed his B.Sc. (Hons.) in Physics from Jamia Millia Islamia, New Delhi, with minors in chemistry and mathematics. His early academic foundation was laid at Hamdard Public School, New Delhi, and High School Lagua, Katihar, Bihar, where he excelled in science and mathematics. Throughout his academic journey, Dr. Hussain demonstrated consistent excellence, developing a strong theoretical base complemented by computational skills. His educational background integrates rigorous coursework, research training, and active participation in advanced academic programs and summer schools.

Experience

Dr. Hussain is currently a Postdoctoral Fellow at the Institute of Theoretical Physics and Cosmology, Zhejiang University of Technology, China, working on advanced theoretical cosmology. His doctoral research at IIT Kanpur explored nonminimal coupling of fluids and scalar fields in cosmology under the guidance of Prof. Kaushik Bhattacharya. He has served extensively as a teaching assistant for various physics laboratory courses, mentoring undergraduate and postgraduate students in experiments ranging from modern physics to advanced quantum techniques. Dr. Hussain has presented research findings at prestigious international conferences across Asia and Europe, organized academic events such as the “Challenges of Modern Cosmology” meeting, and collaborated with researchers worldwide. His professional journey reflects a blend of research excellence, teaching dedication, and active involvement in fostering global scientific dialogue.

Research Interest

Dr. Hussain’s research interests lie at the intersection of cosmology, gravitational physics, and quantum field theory, with a particular focus on the dynamics of dark energy, dark matter, and scalar field interactions. He is deeply engaged in studying nonminimal couplings, dynamical system analyses, and observational constraints on cosmological models using the latest astronomical data. His work often integrates theoretical modeling with numerical simulations, employing advanced computational techniques to test and refine cosmological theories. He is also interested in exploring modified gravity theories, inflationary models, and the implications of quantum effects in the evolution of the universe. Through his research, Dr. Hussain aims to bridge the gap between high-level theoretical constructs and observational evidence, contributing to a more unified understanding of the cosmos.

Award and Honor

Dr. Hussain’s academic journey is marked by recognition through high-impact publications, international conference invitations, and successful collaborations with leading global research groups. While pursuing his Ph.D., he published multiple articles in reputed journals such as JCAP, Physical Review D, and Chinese Journal of Physics, many of which are indexed in Scopus and IEEE Xplore. His presentations at events like the Cosmology@CCSP conference, International Conference on Mathematical Modeling in Physical Sciences, and the “Cosmology in Miramare” program have earned commendations from peers and experts alike. He has also been entrusted with organizing scientific meetings, reflecting trust in his leadership within the research community. These achievements underline his growing reputation as an emerging expert in theoretical cosmology and a promising contributor to the advancement of modern physics.

Research Skill

Dr. Hussain possesses advanced research skills in theoretical modeling, numerical simulations, and high-performance computing. He is proficient in programming languages such as Python, C/C++, and Mathematica, and skilled in parallel computing techniques to optimize large-scale cosmological simulations. His expertise includes data analysis using observational datasets like Supernova, Hubble, and BAO measurements, as well as integration of MCMC algorithms for parameter estimation. He has implemented computational optimizations such as Cython integration to accelerate model performance. In addition, Dr. Hussain excels in scientific writing, peer-reviewed publishing, and delivering impactful presentations at global conferences. His ability to combine deep theoretical insights with computational rigor allows him to conduct cutting-edge research that aligns closely with contemporary challenges in cosmology and gravitational physics.

Publication Top Notes

  • Title: Dynamical stability of the k-essence field interacting nonminimally with a perfect fluid
    Authors: A. Chatterjee, S. Hussain, K. Bhattacharya
    Year: 2021
    Citations: 34

  • Title: Dynamical systems analysis of tachyon-dark-energy models from a new perspective
    Authors: S. Hussain, S. Chakraborty, N. Roy, K. Bhattacharya
    Year: 2023
    Citations: 27

  • Title: Dynamical stability in models where dark matter and dark energy are nonminimally coupled to curvature
    Authors: S. Hussain, A. Chatterjee, K. Bhattacharya
    Year: 2023
    Citations: 23

  • Title: Dynamical stability in presence of non-minimal derivative dependent coupling of k-essence field with a relativistic fluid
    Authors: K. Bhattacharya, A. Chatterjee, S. Hussain
    Year: 2023
    Citations: 22

  • Title: Ghost Condensates and Pure Kinetic k-Essence Condensates in the Presence of Field–Fluid Non-Minimal Coupling in the Dark Sector
    Authors: S. Hussain, A. Chatterjee, K. Bhattacharya
    Year: 2023
    Citations: 13

  • Title: Interacting models of dark energy and dark matter in Einstein scalar Gauss Bonnet gravity
    Authors: S. Hussain, S. Arora, Y. Rana, B. Rose, A. Wang
    Year: 2024
    Citations: 10

  • Title: Comprehensive study of k-essence model: dynamical system analysis and observational constraints from latest Type Ia supernova and BAO observations
    Authors: S. Hussain, S. Nelleri, K. Bhattacharya
    Year: 2025
    Citations: 9

  • Title: Stability analysis of warm quintessential dark energy model
    Authors: S. Das, S. Hussain, D. Nandi, R.O. Ramos, R. Silva
    Year: 2023
    Citations: 9

  • Title: Influence of feed levels on the growth of Lutjanus johni (Snapper) and Pomadasys kaakan (Drum)
    Authors: S.M. Hussain, G. Abbas
    Year: 1995
    Citations: 9

  • Title: Non-adiabatic particle production scenario in algebraically coupled quintessence field with dark matter fluid
    Authors: S. Hussain
    Year: 2024
    Citations: 4

  • Title: The nature of cosmological metric perturbations in presence of gravitational particle production
    Authors: K. Bhattacharya, A. Chatterjee, S. Hussain
    Year: 2022
    Citations: 4

  • Title: Biochemical composition of Lutjanus johni and Pomadasys kaakan reared in the tanks
    Authors: G. Abbas, S. Hussain
    Year: 1994
    Citations: 2

  • Title: Probing the Dynamics of Gaussian Dark Energy Equation of State Using DESI BAO
    Authors: S. Hussain, S. Arora, A. Wang, B. Rose
    Year: 2025
    Citations: 1

Conclusion

Dr. Md Saddam Hussain stands out as a dynamic and accomplished researcher whose work bridges theory, computation, and observation in cosmology. His solid academic foundation, extensive research experience, and strong international collaborations reflect his dedication to advancing the understanding of the universe’s fundamental properties. With a growing publication record in high-impact journals, expertise in modern computational techniques, and proven teaching and leadership capabilities, he is well-positioned to make transformative contributions to theoretical physics. Dr. Hussain’s future research aims to address some of the most pressing questions in cosmology while fostering interdisciplinary collaboration. His track record and vision make him not only deserving of recognition but also a valuable asset to the global scientific community.

Svilen Sabchevski | Dynamical Systems | Best Researcher Award

Prof. Svilen Sabchevski | Dynamical Systems | Best Researcher Award

Head of Laboratory Plasma Physics and Engineering at Institute of Electronics of the Bulgarian Academy of Sciences, Bulgaria

Prof. Svilen Sabchevski 🎓, Associate Professor and Head of Laboratory at the Institute of Electronics, Bulgarian Academy of Sciences 🇧🇬, is a globally recognized expert in physical electronics, plasma physics, and terahertz (THz) science 🌐⚡. With a PhD in Physics and an MSc in Electronic Engineering (summa cum laude) 🧪📘, he has authored over 110 publications, including high-impact journal articles, book chapters, and patents 📚🔬. His pioneering research in gyrotron technologies supports applications in nuclear fusion, advanced spectroscopy, and medical imaging 🚀🏥. With 2,000+ citations and an h-index of 25 📈, Prof. Sabchevski leads major international collaborations across Europe and Asia. As a scientific editor, project coordinator, and THz technology advocate, he stands as a leading force in computational modeling and high-power electron-beam systems 💡👨‍🔬.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

🎓 Education

Prof. Svilen Sabchevski holds an MSc in Electronic Engineering (Electron Devices) from St. Petersburg State Electrotechnical University, graduating summa cum laude 🏅. He earned his Ph.D. in Physics from the Institute of Electronics at the Bulgarian Academy of Sciences (IE-BAS) in 1991 🧪. His academic foundation is deeply rooted in electron-device physics, laying the groundwork for his impactful research in plasma and physical electronics. His education combined rigorous theoretical grounding with strong applied engineering expertise, shaping his future trajectory in high-frequency radiation systems, gyrotrons, and THz technology ⚙️📡. This elite academic background has empowered him to lead complex research projects, engage in international collaborations, and contribute transformative work to the field of computational and experimental electron-beam physics 🌍🧠.

🏢 Professional Experience

Prof. Sabchevski is currently Head of the Plasma Physics and Engineering Laboratory at IE-BAS 🏛️, where he leads advanced research in gyrotron development, electron optics, and THz radiation. Over the past five years, he has served as visiting professor and scientist in prestigious institutions across Japan 🇯🇵, Germany 🇩🇪, and Switzerland 🇨🇭, collaborating on next-generation electron-beam technologies. His leadership roles in bilateral and global research initiatives, including the International Consortium for High-Power THz Science & Technology, have established him as a leading innovator in the field 🚀🌐. With more than three decades of experience in physical modeling, software development, and experimental science, Prof. Sabchevski blends academic depth with engineering prowess to pioneer cutting-edge solutions in applied radiophysics and nuclear fusion systems ⚡👨‍🔬.

🔬 Research Interest

Prof. Sabchevski’s research is centered on physical electronics, intense electron beams, and terahertz (THz) science 🔬📡. He specializes in the development of gyrotrons for controlled thermonuclear fusion reactors, advanced diagnostics, and high-resolution imaging systems for technological and medical use 🧲💉. Additional areas include computational physics, CAD-based system optimization, and nonlinear dynamics of high-power electron-optical devices. He has significantly contributed to the understanding of mode interaction in gyro-devices and the generation of coherent THz radiation, crucial for spectroscopy and plasma heating 💥📈. His expertise also spans peniotron technologies and ECR-based microwave sources. By integrating theory, simulation, and practical experimentation, Prof. Sabchevski leads groundbreaking research with global scientific and industrial impact 🌍💡.

🏅 Awards and Honors

Prof. Sabchevski has earned widespread acclaim for his research excellence, international collaborations, and contributions to scientific communities 🎖️🌟. He serves on the editorial boards of prestigious journals such as Journal of Infrared, Millimeter, and Terahertz Waves (Springer) and Advances in Modern Oncology Research 📘🖋️. As editor of the International THz Consortium Newsletter and website, he has championed global efforts to advance THz science and technology. His research has been recognized in Bulgaria and internationally, including funding and leadership in bilateral projects with France and Japan 🧭🇫🇷🇯🇵. With over 2,000 citations and an H-index of 25, his scientific influence continues to grow. His dedication and visionary leadership make him a true ambassador of high-power THz technology and academic excellence 🔭💫.

🛠️ Research Skills

Prof. Sabchevski brings a rare combination of theoretical expertise, software development, and hands-on experimental capability 🔍🧮. He is a specialist in simulation-driven research, developing custom software packages for modeling electron beams, gyrotrons, and THz systems. His skillset includes electromagnetic theory, nonlinear wave interaction, CAD optimization, and plasma diagnostic techniques 📡🛠️. He excels in both frequency- and time-domain analysis of complex systems and is highly experienced with international research protocols and large-scale scientific instrumentation ⚙️🧪. His ability to conceptualize, simulate, and validate gyro-devices places him among the leading figures in modern terahertz science. These interdisciplinary strengths have enabled him to work on frontier applications in fusion energy, spectroscopy, and biomedical imaging 🌐📊.

📝Publications Top Note

  • Title: Development and applications of high-frequency gyrotrons in FIR FU covering the sub-THz to THz range
    Authors: T. Idehara, S.P. Sabchevski
    Year: 2012
    Citations: 122
    Source: Journal of Infrared, Millimeter, and Terahertz Waves, 33(7), 667–694

  • Title: A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet
    Authors: T. Idehara, I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, Y. Itakura, K. Ohashi, S.P. Sabchevski, et al.
    Year: 2004
    Citations: 121
    Source: IEEE Transactions on Plasma Science, 32(3), 903–909

  • Title: Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies
    Authors: M.Y. Glyavin, T. Idehara, S.P. Sabchevski
    Year: 2015
    Citations: 120
    Source: IEEE Transactions on Terahertz Science and Technology, 5(5), 788–797

  • Title: Novel and emerging applications of the gyrotrons worldwide: Current status and prospects
    Authors: S. Sabchevski, M. Glyavin, S. Mitsudo, Y. Tatematsu, T. Idehara
    Year: 2021
    Citations: 115
    Source: Journal of Infrared, Millimeter, and Terahertz Waves, 42(7), 715–741

  • Title: The gyrotrons as promising radiation sources for THz sensing and imaging
    Authors: T. Idehara, S.P. Sabchevski, M. Glyavin, S. Mitsudo
    Year: 2020
    Citations: 102
    Source: Applied Sciences, 10(3), 980

  • Title: Direct observation of the hyperfine transition of ground-state positronium
    Authors: T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, et al.
    Year: 2012
    Citations: 99
    Source: Physical Review Letters, 108(25), 253401

  • Title: Porous silica derived from sago waste and its application for SiO₂/C composites in aluminum-air batteries
    Authors: H. Aripin, S. Sutisna, E. Priatna, I.N. Sudiana, E. Surahman, S. Sabchevski
    Year: 2022
    Citations: 4
    Source: International Journal of Electrochemical Science, 17(12), 221221

  • Title: Modelling, simulation and CAD of gyrotrons for high-power terahertz science and technologies
    Authors: S. Sabchevski, T. Idehara, M. Damyanova, I. Zhelyazkov, E. Balabanova, et al.
    Year: 2018
    Citations: 4
    Source: Journal of Physics: Conference Series, 992(1), 012001

  • Title: Beam–wave interaction from FEL to CARM and associated scaling laws
    Authors: E. Di Palma, G. Dattoli, E. Sabia, S. Sabchevski, I. Spassovsky
    Year: 2017
    Citations: 4
    Source: IEEE Transactions on Electron Devices, 64(10), 4279–4286

  • Title: Current status of the development of the problem-oriented software package GYREOSS
    Authors: M. Damyanova, S. Sabchevski, I. Zhelyazkov, E. Vasileva, E. Balabanova, et al.
    Year: 2014
    Citations: 4
    Source: Journal of Physics: Conference Series, 514(1), 012056

🌍📈Conclusion

Prof. Svilen Sabchevski stands as a globally respected scientist and research leader in the realm of high-frequency electron-beam systems and terahertz technologies 🌍📈. With over 110 publications, 2,000+ citations, and an influential editorial and research presence, he exemplifies the qualities of a visionary academic and innovative engineer 📚👨‍🔬. His deep expertise, collaborative spirit, and commitment to advancing THz science across disciplines and continents make him an outstanding candidate for honors like the Best Researcher Award 🏆. Continuously contributing to scientific knowledge, mentoring emerging scholars, and solving global challenges through cutting-edge research, Prof. Sabchevski’s impact reaches far beyond borders—illuminating the future of radiophysics, fusion energy, and medical technology 🚀💡.

lhtisham ul haq | Mathematical Physics | Best Researcher Award

Dr. lhtisham ul haq | Mathematical Physics | Best Researcher Award

Student at University of Science and Technology China, China

Dr. Ihtisham Ulhaq is an emerging physicist and sustainability innovator 🌱🔬, currently advancing his Ph.D. at the University of Science and Technology of China 🇨🇳. With a robust foundation in materials science and renewable energy, his pioneering research on lead-free perovskite solar cells ⚡ and spectrally split agrivoltaic systems 🌞🌾 is shaping eco-friendly energy solutions with global relevance. Dr. Ulhaq has authored 12 peer-reviewed publications 📚—five as the lead author—across high-impact Q1/Q2 journals, showcasing his scientific rigor and thought leadership. His multidisciplinary collaborations across China, Saudi Arabia, and Pakistan foster cutting-edge innovation in nanomaterials, photovoltaics, and sustainable agriculture 🤝🌍. With hands-on expertise in MOCVD, thin-film deposition, and doping strategies, he is bridging theoretical insights with scalable applications. Passionate, visionary, and globally connected, Dr. Ulhaq is driving transformative change in the fields of clean energy and agritech, embodying the spirit of next-generation research excellence 🌐🏆.

Professional Profile

Google Scholar
ORCID Profile

Education 🎓📚

Dr. Ihtisham Ulhaq’s academic journey reflects a deep commitment to the frontiers of physics and sustainable technologies. He earned his M.Phil. in Physics from the University of Lahore 🇵🇰, where he laid the groundwork for his specialization in energy materials. Currently pursuing his Ph.D. at the prestigious University of Science and Technology of China 🇨🇳, Dr. Ulhaq focuses on renewable energy and advanced materials research. His educational background is anchored in strong theoretical physics, coupled with a practical mastery of experimental tools such as thin-film deposition, nanostructuring, and semiconductor engineering 🔬. With a curriculum steeped in interdisciplinary learning and international exposure, he has cultivated the analytical and innovative skill set required to solve global energy and environmental challenges 🌍. His academic excellence has been consistently demonstrated through scholarly achievements, publication output, and research-led learning, laying a solid foundation for a promising career in advanced scientific innovation 🌟.

Professional Experience 🧪🏢

Though still early in his career, Dr. Ihtisham Ulhaq has amassed significant professional experience through intensive academic research and collaborative projects. As a doctoral researcher at the University of Science and Technology of China, he has spearheaded studies in photovoltaics, nanomaterials, and solar cell optimization ☀️. He has independently led and co-led three major research initiatives, including the design of a spectrally split agrivoltaic system combined with container farming 🌿🏗️—a novel concept integrating agriculture and energy efficiency. His work environment emphasizes international collaboration, where he has actively engaged with research partners across China, Saudi Arabia, and Pakistan 🤝. His hands-on experience in laboratory techniques such as MOCVD, doping analysis, and electron transport layer enhancement equips him with a comprehensive skill set ideal for next-gen green technologies 💡. Dr. Ulhaq’s professional path is defined by rigorous experimentation, innovation-oriented thinking, and a mission to translate science into sustainable global solutions 🌐.

Research Interest 🔍⚡

Dr. Ihtisham Ulhaq’s research passion lies at the intersection of clean energy, nanotechnology, and sustainable agriculture. He specializes in developing lead-free perovskite solar cells, aiming to improve their stability, efficiency, and environmental safety 🌞♻️. His interest extends to agrivoltaics, where he designs hybrid systems combining renewable energy generation with agricultural productivity—an area where he proposed a unique spectrally split system for container farming 🌾💧. His scientific curiosity drives explorations in bandgap engineering, doping strategies, and interface tailoring to enhance energy material performance at the nanoscale. He is equally intrigued by the optical and magnetic properties of functional thin films, especially ferrite-based materials with communication applications 📡. With a vision to create integrated, eco-friendly technologies, Dr. Ulhaq’s research is highly interdisciplinary and aligned with sustainable development goals 🧭. He is deeply committed to transforming lab-scale discoveries into scalable, real-world solutions that contribute to a greener and more resilient future 🌍🔋.

Awards and Honors 🏆🎖️

While still in the formative years of his research career, Dr. Ihtisham Ulhaq’s accomplishments have earned him increasing recognition in academic circles 🌟. His 12 peer-reviewed journal publications, five of which he authored as the primary investigator, have appeared in reputable Q1/Q2 scientific journals—a significant feat in competitive research domains 📘🧠. His work on lead-free perovskite solar cells and agrivoltaic systems has garnered attention for its originality and relevance to sustainable innovation 🌱🔬. While he is actively being considered for prominent awards such as the Best Researcher Award, his contributions are already making ripples within the scientific community through impactful research and global collaboration 🌐. As a rising researcher, he is paving the way for future distinctions, honors, and fellowships tied to innovation, green energy, and interdisciplinary science. These early milestones reflect a trajectory of excellence, driven by purpose, persistence, and a profound scientific vision 🧭.

Conclusion ✨📈

Dr. Ihtisham Ulhaq exemplifies the spirit of the modern researcher: globally engaged, scientifically rigorous, and deeply committed to sustainability. Through his pioneering work in clean energy—particularly in lead-free perovskite solar cells and agrivoltaic system integration—he is addressing some of the most urgent challenges of our time 🌍⚡. His multidisciplinary expertise, spanning materials science, physics, nanotechnology, and agriculture, positions him as a key innovator in eco-technology and renewable solutions 🔄🌿. With a growing publication record, dynamic collaborations, and a proactive approach to scientific inquiry, Dr. Ulhaq is not only building a distinguished academic profile but also laying the groundwork for real-world impact 🏗️📊. As he continues to expand his research, leadership, and outreach, his trajectory promises contributions that will resonate globally. In every dimension—academic, practical, and visionary—Dr. Ulhaq embodies the values deserving of recognition through the Best Researcher Award 🏅.

Publications Top Notes

🔬 Title: Impact of molybdenum doping on the optoelectronic and structural properties of CsPbIBr₂ perovskite solar cell
👨‍🔬 Authors: MI Khan, A Mujtaba, S Hussain, M Atif, AI Qureshi, W Shahid, A Ali
📅 Year: 2024
📈 Citations: 29
📚 Source: Physica B: Condensed Matter, Volume 678, Article 415758


🔬 Title: Bandgap reduction and efficiency enhancement in Cs₂AgBiBr₆ double perovskite solar cells through gallium substitution
👨‍🔬 Authors: MI Khan, A Ullah, A Mujtaba, BS Almutairi, W Shahid, A Ali, JR Choi
📅 Year: 2024
📈 Citations: 24
📚 Source: RSC Advances, Volume 14 (8), Pages 5440–5448


🔬 Title: Influence of gallium on structural, optical and magnetic properties of Bi-YIG thin films
👨‍🔬 Authors: MS Hasan, MI Khan, SS Ali, A Brahmia
📅 Year: 2024
📈 Citations: 10
📚 Source: Materials Science and Engineering: B, Volume 301, Article 117180


🔬 Title: Bandgap Engineering and Enhancing Optoelectronic Performance of a Lead-Free Double Perovskite Cs₂AgBiBr₆ Solar Cell via Al Doping
👨‍🔬 Authors: A Ullah, M Iftikhar Khan, Ihtisham-ul-haq, BS Almutairi, DB N. AlResheedi, et al.
📅 Year: 2024
📈 Citations: 9
📚 Source: ACS Omega, Volume 9 (16), Pages 18202–18211


🔬 Title: Trans-polyacetylene doped Cs₂AgBiBr₆: Band gap reduction for high-efficiency lead-free double perovskite solar cells
👨‍🔬 Authors: A Ullah, MI Khan, BS Almutairi, A Laref, A Dahshan
📅 Year: 2024
📈 Citations: 4
📚 Source: Results in Physics, Volume 60, Article 107654


🔬 Title: A novel heterostructure of Cr-doped TiO₂ for reducing the recombination rate of dye sensitized solar cells
👨‍🔬 Authors: MI Yasin, MI Khan, S Kanwal, DBN ALResheedi, M Fatima, N Alwadai, et al.
📅 Year: 2024
📈 Citations: 3
📚 Source: Journal of the Korean Ceramic Society, Volume 61 (4), Pages 569–580


🔬 Title: Improving Cs₂AgBiBr₆ double perovskite solar cells through graphdiyne doping: A Stride towards enhanced performance
👨‍🔬 Authors: S Umer, MI Khan, A Ullah, M Asad, W Mnif, Z Algarni, MI Saleem
📅 Year: 2024
📈 Citations: 2
📚 Source: Optical Materials, Volume 156, Article 115896


🔬 Title: Roadmap to 2D Graphene Nanomaterials-Based Biosensors for Early Cancer Detection
👨‍🔬 Authors: JWLHIUHMA Khan
📅 Year: 2025
📈 Citations: 1
📚 Source: Plasmonics


🔬 Title: Enhancing efficiency in double perovskite solar cells through bandgap reduction via organic polymer doping
👨‍🔬 Authors: MI Khan, A Mujtaba, A Ullah, B Ali, M Atif, MS Hasan
📅 Year: 2025
📈 Citations: 1
📚 Source: Results in Chemistry, Volume 13, Article 101999


🔬 Title: Enhancing the Efficiency and Stability of Cs₂AgBiBr₆ Solar Cells via MAPbBr₃ Decoration
👨‍🔬 Authors: MI Khan, M Li, OAA Ali, SF Mahmoud
📅 Year: 2025
📚 Source: Materials Research Bulletin, Article 113501


🔬 Title: Enhancing efficiency of Cs₂AgBiBr₆ double perovskite solar cells through bandgap reduction by molybdenum doping
👨‍🔬 Authors: IMIKLBFHERP Patil
📅 Year: 2025
📚 Source: Journal of the Korean Ceramic Society


🔬 Title: Enhancing solar cell efficiency: lead-free double perovskite solar cells Cs₂AgBiBr₆ with magnesium-doped and Zn₂SnO₄ electron transport layer
👨‍🔬 Authors: MI Khan, Lamia Ben Farhat
📅 Year: 2024
📚 Source: Journal of Sol-Gel Science and Technology, Volume 112 (2), Pages 468–479

Zoriana Danel | Mathematical Physics | Best Researcher Award

Assoc. Prof. Dr. Zoriana Danel | Mathematical Physics | Best Researcher Award

WIMiF at Cracow University of Technology, Poland

Dr. Zoriana Danel (formerly Zoryana Usatenko) is an accomplished physicist with a distinguished career in theoretical and condensed matter physics. Born in Lviv in 1968, she earned her Ph.D. in Physics and Mathematics from the Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine and later completed her habilitation at Jagiellonian University in Poland. Currently an Associate Professor with Habilitation at the Faculty of Materials Engineering and Physics, Cracow University of Technology, she has an extensive background in soft matter physics, polymer physics, statistical physics, and biophysics. Dr. Danel has held numerous prestigious international fellowships, including from the von Humboldt Foundation and DAAD, and has contributed to various international research collaborations. A prolific speaker and author, she has presented at major conferences across Europe and Asia and published extensively. Fluent in multiple languages, she is also actively engaged in academic supervision and peer review.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Zoriana Danel began her academic journey in physics with a strong foundation in Lviv, Ukraine. She obtained her Ph.D. in Physics and Mathematics in 1996 from the Institute for Condensed Matter Physics at the National Academy of Sciences of Ukraine, under the mentorship of Prof. I.V. Stasyuk. Her doctoral research focused on statistical theories related to condensed matter systems. Recognizing her growing expertise, she pursued and successfully completed her Habilitation (D.Sc.) in 2014 at the Jagiellonian University in Kraków, Poland, further solidifying her academic authority in theoretical and condensed matter physics. Her postdoctoral development included prestigious fellowships in Germany, enabling her to work under top international scholars and expand her research network. With a strong academic background shaped by institutions known for their scientific rigor, Dr. Danel has built an interdisciplinary and globally informed scientific profile, seamlessly integrating education, research, and international collaboration throughout her academic evolution.

Professional Experience

Dr. Zoriana Danel has accumulated a wealth of professional experience across esteemed institutions in Ukraine, Poland, and Germany. Early in her career, she contributed as a researcher at the Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, where she honed her skills in statistical physics and soft matter theory. Following her habilitation, she joined the Faculty of Materials Engineering and Physics at the Cracow University of Technology in Poland, where she currently serves as an Associate Professor with Habilitation. Her academic duties include supervising master’s and doctoral theses, mentoring early-career researchers, and developing physics curricula. Dr. Danel has also held prestigious research fellowships and visiting professorships in institutions across Germany, including positions supported by the Alexander von Humboldt Foundation and the DAAD. Through her roles in academia and international research, she has consistently bridged theoretical development with practical applications, cultivating an impactful and respected academic career.

Research Interest

Dr. Zoriana Danel’s research interests are both broad and deeply specialized, reflecting her expertise in theoretical physics and her interdisciplinary approach. She focuses primarily on soft matter physics, polymer physics, and statistical physics, with particular emphasis on the theoretical modeling of complex systems. Her studies often address the behavior of polymers in disordered environments, confined geometries, and the influence of fractal structures on macromolecular dynamics. She also engages in biophysical research, examining biological polymers and their interaction with cellular structures. Using tools from statistical mechanics and field theory, Dr. Danel investigates how environmental constraints and topological factors affect the behavior of macromolecules, such as DNA and synthetic polymers. Her work contributes significantly to understanding nanoscale phenomena and the physics of self-organization. By connecting theoretical insights to experimental observations, she has fostered collaborations with material scientists, chemists, and biophysicists, thereby advancing interdisciplinary research with potential applications in nanotechnology and biotechnology.

Award and Honor

Throughout her career, Dr. Zoriana Danel has been the recipient of numerous prestigious awards and fellowships that underscore her international recognition and scientific excellence. Most notably, she has received a fellowship from the Alexander von Humboldt Foundation in Germany, a testament to the global impact of her research in physics. She has also been a recipient of multiple DAAD fellowships, which supported her scientific work at German institutions and fostered valuable international collaboration. In addition, Dr. Danel was selected as a visiting researcher at top-tier German universities, such as the Technical University of Munich and Heinrich Heine University Düsseldorf. Her contributions to theoretical physics and interdisciplinary studies have consistently been acknowledged through invitations to present at international conferences and by peer-reviewed journals where she serves as a reviewer. These accolades reflect her sustained excellence in research, her dedication to scientific progress, and her leadership within the international academic community.

Conclusion

Dr. Zoriana Danel is a distinguished physicist whose career exemplifies academic rigor, international collaboration, and scientific innovation. With a strong foundation in theoretical and condensed matter physics, she has expanded her expertise into soft matter, biophysics, and interdisciplinary research. Her educational journey, marked by a Ph.D. from Ukraine and habilitation in Poland, and professional engagements across leading European institutions, highlight her adaptability and influence. Through her pioneering research on polymers in complex environments and her contributions to statistical physics, she continues to push the boundaries of modern theoretical understanding. Dr. Danel’s accolades, including the Humboldt and DAAD fellowships, further affirm her global standing. Beyond her research, she is a dedicated educator and mentor, shaping the next generation of physicists. Her career is a model of how scientific curiosity, rigorous scholarship, and international engagement can converge to make a lasting impact in both academia and applied science.

Publications Top Notes

  • Title: Analytical and Numerical Investigation of Star Polymers in Confined Geometries
    Authors: Zoriana Danel, Joanna Halun, Paweł Karbowniczek
    Year: 2024
    Source: International Journal of Molecular Sciences
    DOI: 10.3390/ijms25179561

  • Title: Entropic Force in a Dilute Solution of Real Ring Polymer Chains with Different Topological Structures in a Slit of Two Parallel Walls with Mixed Boundary Conditions
    Authors: Piotr Kuterba, Zoriana Danel, Wolfhard Janke
    Year: 2023
    Source: Condensed Matter Physics
    DOI: 10.5488/cmp.26.43605

  • Title: Molecular Dynamics Simulations of the Monomer Density Profiles of Knotted Ring Polymer Chains Confined in a Slit of Two Parallel Walls with One Attractive and Another Repulsive Surface
    Authors: P. Kuterba, H. Christiansen, Z. Danel, W. Janke
    Year: 2023
    Source: Journal of Physics: Conference Series
    DOI: 10.1088/1742-6596/2436/1/012031

  • Title: Investigation of Ring and Star Polymers in Confined Geometries: Theory and Simulations
    Authors: Zoriana Danel
    Year: 2021
    Source: Entropy
    DOI: 10.3390/e23020242

  • Title: Photoelectrical Properties and Surface Examination of Luminescent Copolymer Compounds
    Authors: Zoriana Danel
    Year: 2020
    Source: Applied Surface Science
    DOI: 10.1016/j.apsusc.2020.147366

  • Title: Investigations of the Optical and Thermal Properties of the Pyrazoloquinoline Derivatives and Their Application for OLED Design
    Authors: Zoriana Danel
    Year: 2020
    Source: Polymers
    DOI: 10.3390/polym12112707

  • Title: Corrigendum to “Monomer Density Profiles of Real Polymer Chains in Confined Geometries”
    Authors: Zoriana Danel
    Year: 2020
    Source: Journal of Molecular Liquids
    DOI: 10.1016/j.molliq.2019.112066

  • Title: Erratum: “Monomer Density Profiles for Polymer Chains in Confined Geometries: Massive Field Theory Approach”
    Authors: Zoriana Danel
    Year: 2019
    Source: The Journal of Chemical Physics
    DOI: 10.1063/1.5120038

  • Title: Ring Polymer Chains Confined in a Slit Geometry of Two Parallel Walls: The Massive Field Theory Approach
    Authors: Zoriana Danel
    Year: 2017
    Source: Journal of Statistical Mechanics: Theory and Experiment
    DOI: 10.1088/1742-5468/aa5285

  • Title: Polymer Chains in Confined Geometries: Massive Field Theory Approach
    Authors: Zoriana Danel
    Year: 2009
    Source: Physical Review E
    DOI: 10.1103/physreve.80.041802

 

Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Prof. Dr. Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Head of Laboratory of Mathematical Physics at Lebedev Physical Institute of RAS, Russia

Dr. Evgenii Alexandrovich Kuznetsov is a distinguished Russian physicist and mathematician, renowned for his groundbreaking research in nonlinear waves, turbulence, and integrable systems. He earned his Ph.D. in Mathematics and Physics in 1973 and has since contributed significantly to the fields of plasma physics, hydrodynamics, and nonlinear wave theory. Dr. Kuznetsov holds prominent academic positions, including his role as a Principal Research Fellow at the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has been a leading figure in the Center for Nonlinear Studies and has served as Director of the Novosibirsk Department of the International Institute for Nonlinear Science. With extensive international experience as a visiting professor at top institutions worldwide, he is deeply engaged in promoting mathematical physics education. His legacy is marked by numerous publications, significant contributions to theoretical physics, and a strong commitment to advancing nonlinear science globally.

Professional Profile 

Google Scholar
Scopus Profile

Education

Dr. Evgenii Alexandrovich Kuznetsov’s educational journey began at Novosibirsk State University, where he completed his undergraduate studies in Physics in 1969. ‘Including Deputy Director of the Landau Institute of Theretical Physics and the Center of Nonlinear Studies”. His academic pursuits led to a Ph.D. in Mathematics and Physics in 1973 from the Institute for Nuclear Physics at the Siberian Branch of the USSR Academy of Sciences. His doctoral thesis focused on nonlinear waves in plasma, under the guidance of Prof. V.E. Zakharov. In 1981, he earned his Doctorate in Mathematics and Physics, with a thesis on the stability of nonlinear waves and turbulence, solidifying his expertise in nonlinear dynamics. His educational background laid the foundation for a distinguished career in theoretical physics, contributing significantly to both research and academic teaching in the field.
(i) Derivation of the so-called Zakharov-Kuznetsov (ZK) equation for describing ion-acoustic waves in a magnetzed plasma, finding within this equation 3D solitons with their Lyapunov stability proving with the help of the Sobolev integral estimation;
(ii) Finding first time exact anisotropic spectra of weak turbulence of the Kolmogorov type for ion-acoustic waves in strongly magnetized plasma with the help of the so called Zakharov-Kuznetsov transformation;
(iii) Construting first time exact solution for breathers of the 1D nonlinear Schrodinger equation by means of the inverse scattering transform.

Professional Experience

Dr. Kuznetsov’s professional experience spans over five decades, beginning as a trainee researcher in 1969 at the Institute for Nuclear Physics. He later became a senior research fellow and head of the Laboratory of Nonlinear Physics at the Institute of Automation and Electrometry. In 1992, he joined the Landau Institute for Theoretical Physics and the P.N. Lebedev Physical Institute, where he held pivotal roles, including Deputy Director of the Center for Nonlinear Studies. He has also been a visiting professor at renowned institutions like the Weizmann Institute of Science and the University of Colorado. Throughout his career, Dr. Kuznetsov has contributed immensely to research and education in nonlinear physics, turbulence, and integrable systems. His extensive career reflects his leadership in scientific research and his role as a mentor to future generations of physicists.

Research Interests

Dr. Kuznetsov’s primary research interests revolve around nonlinear wave dynamics, turbulence, and integrable systems. He has made significant contributions to the study of solitons, plasma physics, and nonlinear hydrodynamics. His research spans a variety of topics, including the stability of nonlinear waves, wave propagation in plasma, and the mathematics of integrable systems. He has pioneered the study of complex wave interactions and turbulence, particularly in plasma and fluid dynamics. Dr. Kuznetsov has also worked on the development of theoretical frameworks for nonlinear phenomena in various physical systems, including those in plasma, hydrodynamics, and integrable systems. His work continues to influence the understanding of nonlinear dynamics in both classical and quantum systems.

Awards and Honors

Dr. Kuznetsov has received numerous awards and honors throughout his career, recognizing his outstanding contributions to theoretical physics and nonlinear science. He has been a principal research fellow at prestigious Russian institutes, including the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has received recognition for his role in advancing nonlinear physics, particularly in the areas of wave dynamics, turbulence, and solitons. His work has also led to invitations as a visiting professor at esteemed institutions worldwide, further attesting to his global influence in the field. His leadership in the Center for Nonlinear Studies and his involvement in international research collaborations have solidified his reputation as a leader in mathematical physics. He was awarded by the L.I. Mandelstam Price of the Russian Academy of Sciences for the cycle of works “Wave collapses in plasma, optics and hydrodynamics” (2012), elected as a full member of the Russian Academy of Sciences (2016).

Conclusion

Dr. Evgenii Kuznetsov’s career is marked by groundbreaking research, leadership in the scientific community, and a deep commitment to advancing the field of nonlinear physics. His extensive academic experience, both as a researcher and educator, has made him a prominent figure in theoretical physics. He has significantly contributed to our understanding of nonlinear waves, turbulence, and integrable systems, leaving a lasting legacy in these fields. His leadership roles at major Russian institutes and his involvement in international collaborations have established him as a key figure in the global scientific community. Dr. Kuznetsov’s continued work and mentorship will undoubtedly inspire future generations of physicists, ensuring that his impact on the field of mathematical physics endures for years to come.

Publications Top Noted

  • Title: Three-Dimensional Acoustic Turbulence: Weak Versus Strong
    Authors: E.A. Kochurin, Evgeny A. Kuznetsov
    Year: 2024
    Citations: 3
    Source: Physical Review Letters

  • Title: Mathematical Methods of Physics: Problems with Solutions
    Authors: I.V. Kolokolov, E.A. Kuznetsov, A.I. Milstein, D.A. Shapiro, E.G. Shapiro

  • Title: Magnetic Filaments: Formation, Stability, and Feedback
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2024
    Source: Mathematics

  • Title: Quasiclassical Dynamics of Nonlinear Wave Systems
    Authors: E.A. Kuznetsov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Reply to the Comment to the Paper “Symmetry Approach in the Problem of Gas Expansion into Vacuum”
    Authors: E.A. Kuznetsov, M.Y. Kagan

  • Title: Nonlinear Dynamics of Slipping Flows
    Authors: E.A. Kuznetsov, E.A. Mikhailov, M.G. Serdyukov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review)
    Authors: M.Y. Kagan, S.V. Aksenov, A.V. Turlapov, V.M. Silkin, E.A. Burovski
    Year: 2023
    Citations: 3
    Source: JETP Letters

  • Title: Direct Numerical Simulation of Acoustic Turbulence: Zakharov–Sagdeev Spectrum
    Authors: E.A. Kochurin, E.A. Kuznetsov
    Year: 2022
    Citations: 10
    Source: JETP Letters

  • Title: Slipping Flows and Their Breaking
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2022
    Citations: 8
    Source: Annals of Physics

  • Title: Instability of Solitons and Collapse of Acoustic Waves in Media with Positive Dispersion
    Authors: E.A. Kuznetsov
    Year: 2022
    Citations: 5
    Source: Journal of Experimental and Theoretical Physics

  • Title: Turbulence of Ion Sound in a Plasma Located in a Magnetic Field
    Authors: E.A. Kuznetsov
    Year: 1972
    Citations: 58
    Source: Soviet Physics JETP, Vol. 35, p. 310
  • Title: Solitons in a Parametrically Unstable Plasma
    Authors: E.A. Kuznetsov
    Year: 1977
    Citations: 655
    Source: Doklady Akademii Nauk SSSR, Vol. 236, pp. 575–577
  • Title: Three-Dimensional Solitons
    Authors: V.E. Zakharov, E.A. Kuznetsov
    Year: 1974
    Citations: 500
    Source: Soviet Physics – Journal of Experimental and Theoretical Physics

 

 

Victor Kuetche Kamgang | Mathematical Physics | Best Researcher Award

Prof. Victor Kuetche Kamgang | Mathematical Physics | Best Researcher Award

Full Professor at University of Yaounde, Cameroon

Prof. Victor KUETCHE KAMGANG is a distinguished physicist specializing in classical and quantum information processing, with a strong research focus on complex adaptive systems, soliton theory, nonlinear optics, condensed matter, quantum holography, and renewable energies. He currently serves as a Full Professor at Yaoundé 1 State University, Cameroon, and has previously held leadership roles, including Head of the Department of Physics at Dschang State University. His academic journey includes a Ph.D. in Physics from Yaoundé 1 State University, with extensive research on high-dimensional excitations in physical systems. Prof. Kuetche Kamgang has contributed significantly to applied mathematics and theoretical physics, publishing widely in esteemed journals such as Physica D, Chaos, and the European Physical Journal Plus. His interdisciplinary research has global relevance, advancing knowledge in both fundamental and applied sciences. Through his leadership and innovative contributions, he continues to shape the future of physics and engineering research.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Prof. Victor KUETCHE KAMGANG holds a Ph.D. in Physics from Yaoundé 1 State University, Cameroon, awarded in 2010. His doctoral research focused on high-dimensional excitations in physical evolution systems, under the supervision of Prof. Crepin Timoleon Kofane. Prior to that, he obtained an M.Sc. in Physics with a specialization in Mechanics in 2004, where he explored nonlinear geometric algebra in the context of smooth loop theory in physics. His undergraduate studies culminated in a B.Sc. in Physics in 2002 and a dual degree in Physics-Chemistry in 1999. Throughout his academic journey, Prof. Kuetche Kamgang has demonstrated exceptional analytical skills and a deep understanding of complex physical phenomena, paving the way for his groundbreaking research in classical and quantum information processing. His rigorous academic training has equipped him with expertise in soliton theory, nonlinear optics, and condensed matter physics, enabling him to make significant contributions to contemporary scientific challenges.

Professional Experience

Prof. Kuetche Kamgang has an extensive academic career spanning over two decades. He currently serves as a Full Professor at Yaoundé 1 State University, a position he has held since November 2024. He is affiliated with multiple institutions, including the National Advanced School of Engineering of Yaoundé and the Faculty of Science at both Yaoundé 1 and Dschang State Universities. Previously, he was Head of the Department of Physics at Dschang State University from 2021 to 2024, where he played a vital role in curriculum development and academic leadership. He also served as an Associate Professor at Yaoundé 1 State University from 2018 to 2024 and a Lecturer from 2012 to 2018. His international experience includes a tenure as a Junior Associate Research Scientist at The Abdus Salam International Centre for Theoretical Physics (ICTP) in Italy from 2012 to 2017, further strengthening his global research collaborations and scientific influence.

Research Interest

Prof. Kuetche Kamgang’s research spans a wide array of advanced topics in physics and applied mathematics. His primary focus lies in classical and quantum information processing, with special attention to complex adaptive systems in control engineering and behavioral sciences. His expertise covers soliton theory, fractals, integrability, condensed matter physics, nonlinear optics, barotropic relaxation, ferromagnetism, and quantum holography. His recent studies explore Kruskal simplifications in carbon nanotube dynamics, the impact of spin torque in ferromagnetic media, and the nonlinear behavior of short light pulses in birefringent optical fibers. He also delves into genetic and neuronal network modeling, contributing significantly to interdisciplinary research. His work, published in high-impact journals such as Physica D, Chaos, and the European Physical Journal Plus, has advanced understanding in multiple scientific domains. His commitment to exploring the mathematical foundations of physical phenomena continues to shape cutting-edge developments in theoretical and applied physics.

Awards and Honors

Prof. Kuetche Kamgang has earned recognition for his outstanding contributions to physics and applied mathematics. His expertise in soliton theory, nonlinear dynamics, and quantum information processing has positioned him as a leading researcher in his field. His international collaborations, particularly with ICTP in Italy, have further enhanced his global scientific impact. He has been an invited speaker at various prestigious awards and has played a crucial role in advancing the understanding of complex systems. His membership in high-profile academic and research institutions signifies his standing in the global scientific community. His groundbreaking contributions to condensed matter physics, nonlinear optics, and renewable energy solutions continue to earn accolades, fostering academic excellence and innovation. His commitment to mentoring young researchers and leading interdisciplinary studies cements his legacy as an influential figure in modern physics.

Conclusion

Prof. Victor KUETCHE KAMGANG stands out as a distinguished physicist whose work has significantly advanced the fields of quantum and classical information processing, nonlinear dynamics, and applied mathematics. His extensive academic background, leadership roles, and research contributions underscore his expertise and influence in global scientific discourse. Through his numerous high-impact publications and international collaborations, he continues to push the boundaries of theoretical and applied physics. His research has practical implications for emerging technologies, including quantum computing, renewable energy, and advanced materials. As a respected professor and mentor, he plays a vital role in shaping future generations of physicists and engineers. His dedication to scientific discovery and interdisciplinary collaboration ensures that his impact on the academic and research communities will remain profound and long-lasting.

Publications Top Noted

  • Title: SU(2)-Hidden Symmetry of Two-Level Media: Propagation of Higher-Order Ultimately Short-Wave Excitations with Nonzero Angular Momenta

    • Authors: R.K.K. Lemoula, Romuald K.K., V.K. Kuetche, Victor Kamgang
    • Year: 2025
    • Source: Physica D: Nonlinear Phenomena
  • Title: Effects of Spin Torque Within Ferromagnetic Infinite Medium: The Short-Wave Approximation and Painlevé Analysis

    • Authors: F.T. Nguepjouo, Francis T., V.K. Kuetche, Victor Kamgang, E. Tchomgo-Felenou, E.
    • Year: 2024
    • Citations: 1
    • Source: Chaos
  • Title: Kruskal Simplification in Carbon Nanotube System Arrays Dynamics

    • Authors: R.S. Noule, Raïssa S., V.K. Kuetche, Victor Kamgang
    • Year: 2024
    • Citations: 1
    • Source: European Physical Journal Plus
  • Title: Coexisting Attractors in Neuronal Circuit Based on Josephson Junction Under the Effects of Light and Temperature: Analysis and Microcontroller Implementation

    • Authors: B. Ramakrishnan, Balamurali, N.F.F. Foka, Noel Freddy Fotie, A. Akgul, Akif, V.K. Kuetche, Victor Kamgang, R.R. Karthikeyan, Rajagopal R.
    • Year: 2024
    • Citations: 2
    • Source: Iranian Journal of Science
  • Title: Nonlinear Dynamics of Short Light Pulse in Birefringent Optical Fiber

    • Authors: H.T. Tchokouansi, Hermann T., R.T. Tchidjo, Robert Tamwo, V.K. Kuetche, Victor Kamgang
    • Year: 2023
    • Source: Optik
  • Title: Cylindrical Gravitational Pulse Waveguide Excitations

    • Authors: J.J. Defo, Jean J., V.K. Kuetche, Victor Kamgang
    • Year: 2022
    • Source: Journal of Experimental and Theoretical Physics
  • Title: Dynamics of Damped Single Valued Magnetic Wave in Inhomogeneous Circularly Polarized Ferrites

    • Authors: H.T. Tchokouansi, Hermann T., E. Tchomgo-Felenou, E., V.K. Kuetche, Victor Kamgang, R.T. Tchidjo, Robert Tamwo
    • Year: 2022
    • Citations: 6
    • Source: Chinese Journal of Physics

 

Huihui Song | Mathematical Physics | Best Researcher Award

Prof. Huihui Song | Mathematical Physics | Best Researcher Award

Vice Dean at Harbin Institute of Technology (Weihai), China

Dr. Song Huihui is a distinguished professor, doctoral supervisor, and Associate Dean at the School of New Energy, Harbin Institute of Technology (Weihai). She is an esteemed member of several technical committees, including the IEEE PES China Technical Committee and the China Society for Electrical Engineering. Her research focuses on renewable energy integration, microgrid and smart grid control, and distributed power network technologies. She has led multiple national and provincial research projects, securing significant funding and contributing groundbreaking work in grid synchronization, energy storage, and zero-carbon village systems. Dr. Song has authored numerous high-impact SCI Q1 journal publications and an academic monograph. Her contributions have earned her prestigious national and provincial research awards, including the Science and Technology Progress Award. With her expertise in power system automation and energy control technologies, Dr. Song continues to drive innovation in the sustainable energy sector, shaping the future of smart and resilient power networks.

Professional Profile 

Scopus Profile

Education

Dr. Song Huihui holds a Ph.D. in electrical engineering, specializing in renewable energy integration and power system control. Her academic journey has been marked by rigorous training in energy systems, control mechanisms, and smart grid technologies. She has cultivated a deep understanding of distributed power networks, microgrid operation, and grid synchronization techniques. With a strong foundation in theoretical and applied research, she has developed expertise in optimizing large-scale renewable energy systems. Her education has been complemented by international collaborations, participation in high-profile research exchanges, and contributions to cutting-edge advancements in energy management. The knowledge and skills acquired during her doctoral and postdoctoral studies have laid the groundwork for her successful career in academia and research. Dr. Song’s academic achievements have enabled her to lead multiple national and international projects, mentor young researchers, and make significant contributions to the evolving landscape of sustainable energy technologies.

Professional Experience

Dr. Song Huihui is a professor, doctoral supervisor, and Associate Dean at the School of New Energy, Harbin Institute of Technology (Weihai). She has held key leadership roles in technical committees, including the IEEE PES China Technical Committee and the China Society for Electrical Engineering. With extensive experience in power system automation and renewable energy research, she has led numerous government-funded and industry-supported projects, addressing challenges in smart grid operation, distributed control, and energy storage. Dr. Song has collaborated with leading institutions and corporations, contributing to large-scale power system innovations and developing solutions for efficient grid integration of renewable energy sources. Her professional career spans academia, industrial partnerships, and policy-oriented research, making her a prominent figure in the field. She actively mentors graduate students, supervises doctoral research, and serves as a young editor for “Electric Power Construction,” furthering her impact on the next generation of energy researchers and professionals.

Research Interest

Dr. Song Huihui’s research focuses on large-scale renewable energy integration, microgrid and smart grid control, distributed energy systems, and energy storage technologies. She explores cutting-edge solutions for grid synchronization, rhythm-based power control, and intelligent control mechanisms to optimize energy networks. Her work emphasizes the development of advanced algorithms for decentralized power distribution, blockchain-enabled energy trading, and artificial intelligence applications in energy management. She is also actively involved in designing zero-carbon village models and multi-energy complementary systems for sustainable urban development. With an interdisciplinary approach, Dr. Song collaborates with researchers in electrical engineering, artificial intelligence, and environmental science to enhance the reliability and resilience of modern power grids. Her contributions to the field have resulted in high-impact publications in SCI Q1 journals, as well as patents and technological advancements that drive the future of smart and efficient energy networks.

Awards and Honors

Dr. Song Huihui has received numerous prestigious awards and honors in recognition of her contributions to energy research and technology development. She has been honored with the National First Prize for Science and Technology Progress by the China Safety Production Association and the China General Chamber of Commerce for her work on distributed photovoltaic microgrid safety systems. Additionally, she has received the Provincial First Prize for Science and Technology Innovation from Yunnan Province for her research on wind energy utilization in complex terrains. Her achievements extend beyond individual recognition, as her collaborative projects have been instrumental in shaping the future of renewable energy and grid stability. These accolades reflect her expertise, leadership, and dedication to advancing energy systems through innovative technologies. As a respected academic and researcher, Dr. Song continues to push the boundaries of sustainable energy solutions, earning national and international recognition for her pioneering work.

Conclusion

Dr. Song Huihui is a highly accomplished researcher, educator, and innovator in the field of renewable energy and power system automation. With a strong academic background, extensive professional experience, and groundbreaking research contributions, she has established herself as a leader in energy control technologies. Her work on grid synchronization, smart grid operations, and zero-carbon energy systems has made a significant impact on the industry and academia. Through her mentorship, publications, and leadership roles in technical committees, she continues to shape the future of sustainable energy. Her numerous awards and honors are a testament to her influence in the field. With an unwavering commitment to advancing energy technologies, Dr. Song is poised to further revolutionize smart and resilient power networks. Her work not only contributes to technological innovation but also plays a vital role in addressing global energy challenges and promoting sustainable development.

Publications Top Noted 

  • SmartGuard: An LLM-Enhanced Framework for Smart Contract Vulnerability Detection
    Authors: Hao Ding, Yizhou Liu, Xuefeng Piao, Huihui Song, Zhenzhou Ji
    Year: 2025
    Source: SSRN
    Link: papers.ssrn.com
  • Optimal Scheduling Strategy for Microgrid Considering the Support Capabilities of Grid Forming Energy Storage
    Authors: Zhibin Yan, Li Li, Peng Yang, Bin Che, Panlong Jin
    Year: 2025
    Source: Electric Power
    Link: mdpi.com

  • Energy-Shaping Control Strategy and Control Parameter Tuning of Cascaded H-Bridge Grid-Connected Inverter
    Authors: Chaodong Li, Manyuan Ye, Yan Ran, Huihui Song
    Year: 2025
    Source: Proceedings of the Chinese Society of Electrical Engineering
    Link: Springer Professional

  • Voltage Control Strategy of Grid Forming Parallel Inverters Based on Virtual Oscillator Control Under Islanded Mode
    Authors: Shitao Wang, Fangzheng Guo, Li Li, Huihui Song, Jingwei Li
    Year: 2025
    Source: Electric Power Automation Equipment
    Link: Nature

  • Energy Storage Configuration and Scheduling Strategy for Microgrid with Consideration of Grid-Forming Capability
    Authors: Zhibin Yan, Li Li, Weimin Wu, Bin Che, Panlong Jin
    Year: 2025
    Source: Electrical Engineering
    Link: Springer Professional

  • Distributed Secondary Control Strategy for the Islanded DC Microgrid Based on Virtual DC Machine Control
    Authors: Li Li, Zhiquan Wu, Haiyu Zhang, Lin Zhu, Huihui Song
    Year: 2025
    Source: Journal of Applied Science and Engineering
    Link: mdpi.com

  • A Fuzzy Hierarchical Selection Method for an Energy Storage Multi Scenario Interval Based on Maximum Evaluation Difference
    Authors: Caijuan Qi, Muyuan Li, Yichen Wu, Yi Wang, Huihui Song
    Year: 2024
    Source: Power System Protection and Control
    Link: Stet Review

  • Application of Energy Shaping Control in New Energy Systems

    • Authors: Song Huihui, Qu Yanbin, Hou Rui
    • Year: 2023
    • Source: Harbin Institute of Technology Press
  • Decentralized Secondary Frequency Control of Autonomous Microgrids via Adaptive Robust-Gain Performance

    • Authors: Jiayi Liu, Huihui Song*, Chenyue Chen, Josep M. Guerrero, Meng Liu, Yanbin Qu
    • Year: 2024
    • Source: IEEE Transactions on Smart Grid
  • Low-Frequency Oscillations in Coupled Phase Oscillators with Inertia

    • Authors: Song Huihui, Zhang Xuewei, Wu Jinfeng, Qu Yanbin
    • Year: 2019
    • Source: Scientific Reports (Nature.com)
  • Frequency Second Dip in Power Unreserved Control During Wind Power Rotational Speed Recovery

    • Authors: Liu Kangcheng, Qu Yanbin, Kim Hak-man, Song Huihui*
    • Year: 2017
    • Source: IEEE Transactions on Power Systems
  • A Blockchain-Enabled Trading Framework for Distributed Photovoltaic Power Using Federated Learning

    • Authors: Xuefeng Piao, Hao Ding, Huihui Song*, Meng Liu, Song Gao
    • Year: 2024
    • Source: International Journal of Energy Research
  • Global Stability Analysis for Coupled Control Systems and Its Application: Practical Aspects and Novel Control

    • Authors: Liu Jiayi, Jiang Shuaihao, Qu Yanbin, Zhang Xuewei, Song Huihui*
    • Year: 2021
    • Source: Journal of the Franklin Institute
  • Crowbar Resistance Value-Switching Scheme Conjoint Analysis Based on Statistical Sampling for LVRT of DFIG

    • Authors: Y.B. Qu, L. Gao, G.F. Ma, H.H. Song*, S.T. Wang
    • Year: 2019
    • Source: Journal of Modern Power Systems and Clean Energy
  • Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Oscillators System by Energy-Based Synchronization Control

    • Authors: Huaqiang Zhang, Xiangzhong Du, Jiayi Liu, Hak-Man Kim, Huihui Song*
    • Year: 2020
    • Source: Journal of the Franklin Institute
  • Global Stability Analysis for Coupled Control Systems and Its Application: Practical Aspects and Novel Control

    • Authors: Liu J., Jiang S., Qu Y., Zhang X.W., Song H.H.*
    • Year: 2021
    • Source: Journal of the Franklin Institute
  • Transient Stability Analysis and Enhanced Control Strategy for Andronov-Hopf Oscillator Based Inverters

    • Authors: Li Li, Huihui Song, Shitao Wang, Meng Liu, Song Gao, Haoyu Li, Josep M. Guerrero
    • Year: 2024
    • Source: IEEE Transactions on Energy Conversion

 

Thomas Kotoulas | Mathematical Physics | Best Researcher Award

Dr. Thomas Kotoulas | Mathematical Physics | Best Researcher Award

Researcher at Aristotle University of Thessaloniki, Greece.

Dr. Thomas Kotoulas is a distinguished researcher specializing in Newtonian Dynamics and Celestial Mechanics, with a prolific academic record comprising 41 refereed journal articles, including 18 monographs. His research spans critical areas such as the restricted three-body problem, periodic orbit computation, symplectic mapping models, and inverse problems in Newtonian dynamics, with applications in astronomy and galactic dynamics. He has been actively involved in funded research projects and received prestigious fellowships, including one from the National Foundation of Fellowships (I.K.Y.). Recognized for his outstanding peer-review contributions, he has been awarded the Outstanding Reviewer Award by Research in Astronomy and Astrophysics and acknowledged by Astrophysics and Space Science. He has reviewed for 13 international journals and contributed to Mathematical Reviews. With his extensive work in celestial mechanics, his expertise plays a crucial role in understanding planetary and asteroid dynamics, making him a strong candidate for the Best Researcher Award.

Professional Profile 

Google Scholar

Education

Dr. Thomas Kotoulas holds a B.Sc. in Physics from the Aristotle University of Thessaloniki (A.U.Th.), where he graduated with a very good distinction (7.71/10) in 1995. He pursued his Ph.D. in Celestial Mechanics and Dynamical Systems at the same institution, completing his thesis, “Dynamical evolution of small bodies at resonant areas in the Outer Solar System”, in 2003 with highest honors (Excellent). During his doctoral studies, he was awarded a fellowship from the National Foundation of Fellowships (I.K.Y.), recognizing his academic excellence. His postdoctoral research included significant contributions to the study of the restricted three-body problem, funded by the Greek Ministry of Education and the European Community. His educational background, rooted in classical physics, dynamical systems, and celestial mechanics, laid the foundation for his impactful career in Newtonian dynamics, orbital mechanics, and inverse problems in physics, with direct applications in astronomy and galactic dynamics.

Professional Experience

Dr. Kotoulas has built an impressive career in celestial mechanics and dynamical systems, contributing extensively through research, peer review, and mentorship. He has worked as a postdoctoral researcher for over five years, with projects focusing on the dynamics of the restricted three-body problem and applications in asteroid and Kuiper Belt studies. His professional journey includes participation in the EPEAEK II PYTHAGORAS research project, where he played a key role in modeling planetary resonances. He has been a reviewer for over 13 prestigious scientific journals, including Celestial Mechanics and Dynamical Astronomy, Astronomy and Astrophysics, and Monthly Notices of the Royal Astronomical Society (MNRAS). Additionally, he has authored 41 research papers, 18 of which are monographs, showcasing his expertise in orbital stability, periodic orbits, and inverse problems. His experience solidifies his reputation as a leading figure in Newtonian dynamics and celestial mechanics.

Research Interests

Dr. Kotoulas’ research is deeply rooted in Newtonian dynamics, celestial mechanics, and inverse problems in physics, with a strong focus on planetary motion, asteroid dynamics, and resonance stability. His work on the restricted three-body problem involves studying periodic orbits, resonance phenomena, and dynamical stability, with applications in asteroid belt studies, planetary migration, and Kuiper Belt dynamics. He has also made significant contributions to the inverse problem of Newtonian dynamics, using differential equations to reconstruct gravitational force fields from observed orbital data. His research integrates mathematical modeling, computational methods, and astrophysical applications, contributing to a deeper understanding of planetary system evolution. Additionally, his expertise in symplectic mapping models, spectral analysis of orbits, and stability analysis has provided new insights into long-term orbital behaviors and galactic dynamics, positioning him as a key contributor to the field of astrodynamics and dynamical astronomy.

Awards and Honors

Dr. Kotoulas has received numerous awards and distinctions for his contributions to celestial mechanics and dynamical astronomy. He was recognized as one of the best external reviewers by Research in Astronomy and Astrophysics in 2022, earning the Outstanding Reviewer Award. Additionally, he received formal recognition from Astrophysics and Space Science for his invaluable peer-review contributions. His research excellence has been acknowledged through a prestigious fellowship from the National Foundation of Fellowships (I.K.Y.), awarded during his Ph.D. studies. His dedication to advancing celestial mechanics is further reflected in his role as a registered reviewer for Mathematical Reviews, where he has contributed expert evaluations of influential research papers. These honors underscore his exceptional impact in the field, his commitment to scientific integrity, and his standing as a respected researcher in Newtonian dynamics and astrophysics.

Conclusion

Dr. Thomas Kotoulas is a renowned researcher in celestial mechanics, Newtonian dynamics, and inverse problems in physics, with an extensive academic, research, and professional portfolio. His contributions to orbital stability, planetary resonance, and dynamical system modeling have provided valuable insights into planetary and asteroid motion. With 41 research publications, 18 monographs, multiple fellowships, and prestigious reviewer awards, he has established himself as a leading figure in astrophysical research. His dedication to advancing celestial mechanics, combined with his active role in peer review and academic mentorship, makes him a highly deserving candidate for the Best Researcher Award. His work continues to shape the understanding of orbital mechanics and planetary system evolution, reinforcing his position as a respected scientist in the field of dynamical astronomy and mathematical physics.

Publications Top Noted

  • Planar periodic orbits in exterior resonances with Neptune

    • Authors: G. Voyatzis, T. Kotoulas
    • Year: 2005
    • Citations: 44
    • Source: Planetary and Space Science, 53(11), 1189-1199
  • Comparative study of the 2:3 and 3:4 resonant motion with Neptune: an application of symplectic mappings and low-frequency analysis

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2004
    • Citations: 43
    • Source: Celestial Mechanics and Dynamical Astronomy, 88, 343-363
  • On the stability of the Neptune Trojans

    • Authors: R. Dvorak, R. Schwarz, Á. Süli, T. Kotoulas
    • Year: 2007
    • Citations: 33
    • Source: Monthly Notices of the Royal Astronomical Society, 382(3), 1324-1330
  • Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with Neptune

    • Authors: G. Voyatzis, T. Kotoulas, J.D. Hadjidemetriou
    • Year: 2005
    • Citations: 31
    • Source: Celestial Mechanics and Dynamical Astronomy, 91, 191-202
  • On the 2/1 resonant planetary dynamics – periodic orbits and dynamical stability

    • Authors: G. Voyatzis, T. Kotoulas, J.D. Hadjidemetriou
    • Year: 2009
    • Citations: 30
    • Source: Monthly Notices of the Royal Astronomical Society, 395(4), 2147-2156
  • Resonant periodic orbits of trans-Neptunian objects

    • Authors: T.A. Kotoulas, J.D. Hadjidemetriou
    • Year: 2002
    • Citations: 22
    • Source: Earth, Moon, and Planets, 91, 63-93
  • Three-dimensional periodic orbits in exterior mean motion resonances with Neptune

    • Authors: T.A. Kotoulas, G. Voyatzis
    • Year: 2005
    • Citations: 21
    • Source: Astronomy & Astrophysics, 441(2), 807-814
  • Homogeneous two-parametric families of orbits in three-dimensional homogeneous potentials

    • Authors: G. Bozis, T.A. Kotoulas
    • Year: 2005
    • Citations: 21
    • Source: Inverse Problems, 21(1), 343
  • Planar retrograde periodic orbits of the asteroids trapped in two-body mean motion resonances with Jupiter

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2020
    • Citations: 20
    • Source: Planetary and Space Science, 182, 104846
  • On the bifurcation and continuation of periodic orbits in the three-body problem

    • Authors: K.I. Antoniadou, G. Voyatzis, T. Kotoulas
    • Year: 2011
    • Citations: 20
    • Source: International Journal of Bifurcation and Chaos, 21(08), 2211-2219
  • Three-dimensional potentials producing families of straight lines (FSL)

    • Authors: G. Bozis, T.A. Kotoulas
    • Year: 2004
    • Citations: 19
    • Source: Rendiconti del Seminario della Facoltà di Scienze dell’Università di …
  • The dynamics of the 1:2 resonant motion with Neptune in the 3D elliptic restricted three-body problem

    • Authors: T.A. Kotoulas
    • Year: 2005
    • Citations: 17
    • Source: Astronomy & Astrophysics, 429(3), 1107-1115
  • Retrograde periodic orbits in 1/2, 2/3 and 3/4 mean motion resonances with Neptune

    • Authors: T. Kotoulas, G. Voyatzis
    • Year: 2020
    • Citations: 15
    • Source: Celestial Mechanics and Dynamical Astronomy, 132 (6-7), 33
  • Two-parametric families of orbits in axisymmetric potentials

    • Authors: T.A. Kotoulas, G. Bozis
    • Year: 2006
    • Citations: 12
    • Source: Journal of Physics A: Mathematical and General, 39(29), 9223
  • Construction of 3D potentials from a preassigned two-parametric family of orbits

    • Authors: M.C. Anisiu, T.A. Kotoulas
    • Year: 2006
    • Citations: 11
    • Source: Inverse Problems, 22(6), 2255
  • The dynamical stability of a Kuiper Belt-like region

    • Authors: A. Celletti, T. Kotoulas, G. Voyatzis, J. Hadjidemetriou
    • Year:
    • Citations: 10
    • Source: Monthly Notices of the Royal Astronomical Society, 378(3), 1153-1164