Dipesh | Applied Mathematics | Best Researcher Award

Dr. Dipesh | Applied Mathematics | Best Researcher Award

Assistant Professor at SR University, India

Dr. Dipesh is a dynamic and visionary scholar 🌟 whose research bridges the frontiers of mathematics, engineering, and innovation. With a profound commitment to academic excellence 📚, he has contributed significantly to applied mathematics and interdisciplinary modeling. His scholarly journey is marked by a trail of high-impact publications, collaborative projects, and a passion for advancing scientific knowledge through innovative methods 🧠🔬. Dr. Dipesh’s work seamlessly integrates theory and application, addressing real-world challenges with mathematical precision. As a dedicated educator and researcher 👨‍🏫, he inspires students and peers alike, fostering a culture of curiosity and discovery. Known for his strategic thinking and problem-solving acumen 🎯, he is a driving force in the global research community. His contributions not only elevate his field but also pave the way for future innovations in science and technology 🌐. Dr. Dipesh embodies the spirit of intellectual rigor, innovation, and global impact. 🚀

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education 🎓

Dr. Dipesh’s academic voyage began with a thirst for discovery, leading him to earn top distinctions across his educational milestones. From undergraduate brilliance to postgraduate mastery, he consistently demonstrated scholarly agility. His doctoral pursuit was nothing short of transformative, delving deep into the realms of applied mathematics and computational modeling. With a blend of analytical sharpness and creative thought 💡, he shaped a thesis that resonated across disciplines. Through internships, fellowships, and global academic exposure 🌍, Dr. Dipesh embraced both classical theory and cutting-edge advancements, enriching his intellectual toolkit. His academic record reflects not just excellence, but evolution — an unrelenting quest for understanding the mathematical patterns that shape our world. With each degree, he built not just knowledge, but vision — a vision that continues to inspire every academic and professional arena he enters.

Professional Experience 

With a career rooted in purpose and propelled by passion, Dr. Dipesh has crafted a vibrant professional canvas. From research institutions to academic think tanks, he has donned multiple hats — as a lecturer, mentor, consultant, and principal investigator. His work echoes across domains like mathematical modeling, computational simulations, and interdisciplinary analytics 🔍. Through strategic collaborations and leadership in diverse research initiatives, he has translated theory into impact. His roles have spanned curriculum development, peer review, and technological innovation, each enriching his expertise. Dr. Dipesh brings not just experience, but engagement — an unwavering drive to uplift scientific inquiry and educational transformation 📈. Whether guiding students or steering complex projects, he embodies professionalism with a human touch. His journey is marked by meaningful milestones that reflect both depth and diversity — a true blend of intellect and initiative in motion.

Research Interest 🔬

Dr. Dipesh’s research universe orbits around the fusion of abstract theory and practical relevance. He thrives at the intersection of applied mathematics, machine learning, data-driven modeling, and real-world system optimization 🌐. Passionate about unraveling complex dynamics, his work ventures into fractional calculus, differential equations, computational intelligence, and interdisciplinary simulations. Dr. Dipesh views research as a living organism — evolving, adapting, and contributing to the scientific ecosystem. His investigations are not limited to academic curiosity; they aim to decode pressing global issues using mathematical clarity and innovation 🧠. From predictive algorithms to mathematical physics, he embraces complexity with elegance. A firm believer in cross-domain synergy, his inquiries often collaborate with fields like biology, environmental science, and artificial intelligence 🤝. Driven by both rigor and relevance, his research is a beacon for transformative insight and sustainable innovation.

Awards and Honors 🏆

Dr. Dipesh’s accolades reflect his commitment to excellence and his pioneering spirit. Recognized both nationally and internationally, he has received honors that celebrate not just his research, but his contribution to education and societal advancement 🌟. From best paper awards to research fellowships, he has built a distinguished legacy of merit. These recognitions stem from competitive platforms where innovation meets influence. Whether through academic forums, institutional commendations, or international conferences 🌍, his work has earned applause and admiration. His awards are more than trophies — they are testaments to his intellectual resilience, collaborative ethos, and trailblazing ideas. A mentor to many and a leader in thought, Dr. Dipesh’s decorated career is a living narrative of perseverance, curiosity, and global contribution 🏅. These honors reaffirm his role as a changemaker in the ever-expanding sphere of mathematical sciences.

Conclusion 🧭

Dr. Dipesh stands as a luminary whose path fuses intellect, imagination, and impact. His academic roots, professional ventures, and research brilliance have built a profile defined by depth and dynamism 🌈. More than just a mathematician, he is a storyteller of systems, a bridge between theory and transformation. Every equation he solves and every model he constructs echoes his belief in knowledge as a catalyst for change. As a scholar, mentor, and visionary, he continues to shape minds and spark innovation across continents 📚✨. Dr. Dipesh doesn’t just follow the path — he crafts it, inspiring future thinkers to ask bold questions and dream without limits. His legacy is not only found in published pages or professional positions, but in the lives he touches and the paradigms he shifts 🔄. He is a vibrant force — ever-evolving, ever-inspiring, and ever-forward.

Publications Top Notes

  • 🌿 Effect of time delay on dynamic of plant competition under allelopathy
    Authors: P.K. Dipesh
    Year: 2022
    Citations: 11
    Source: Mathematical Methods in the Applied Sciences

  • 🌲 Optimizing industrial growth through alternative forest biomass resources: A mathematical model using DDE
    Authors: Dipesh, P. Kumar, C. Cattani
    Year: 2023
    Citations: 10
    Source: International Journal of Mathematics and Computer in Engineering

  • 🌱 Effect of time-lag on two mutually competing plant populations under allelochemicals
    Authors: P.K. Dipesh
    Year: 2022
    Citations: 10
    Source: Journal of Physics: Conference Series 2267 (1), 012019

  • 🔬 Enhancing high frequency magneto-dielectric performance with exchange-coupled garnet/spinel ferrite composites
    Authors: Dipesh, A. Sharma, H. Mahajan, N. Aggarwal, S. Sinha, A.K. Srivastava
    Year: 2023
    Citations: 6
    Source: Nano-Structures & Nano-Objects 36, 101035

  • 🧪 Investigating the impact of toxicity on plant growth dynamics through the zero of a fifth-degree exponential polynomial: A mathematical model using DDE
    Authors: Dipesh, P.K.
    Year: 2023
    Citations: 6
    Source: Chaos, Solitons & Fractals 171, 113457

  • 🌾 Modelling the stimulatory and inhibitory allelopathic effects on competing plant populations
    Authors: Dipesh, P. Kumar
    Year: 2022
    Citations: 6
    Source: AIP Conference Proceedings 2435 (1)

  • 📈 Modeling and analysis of demand-supply dynamics with a collectability factor using DDE in economic growth via the Caputo operator
    Authors: Dipesh, Q. Chen, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 5
    Source: AIMS Mathematics 9 (3), 7471–7191

  • 🌿 Sensitivity and Directional Analysis of Two Mutually Competing Plant Population Under Allelopathy Using DDE
    Authors: Dipesh, P. Kumar
    Year: 2023
    Citations: 3
    Source: Mathematics and Computing, 605–620

  • 🌱 Role of Delay on Two Competing Plant Populations Under the Allelopathic Effect
    Authors: Dipesh, P. Kumar
    Year: 2022
    Citations: 2
    Source: Emerging Advancements in Mathematical Sciences, 39–58

  • 💰 Stability Analysis of GDP-National Debt Dynamics using Delay Differential Equation
    Authors: Q. Chen, Dipesh, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 1
    Source: Fractals, 2540059

  • 🌿 A novel approach to 6th-order DDEs in toxic plant interactions and soil impact: beyond Newton-Raphson
    Authors: Dipesh, P. Kumar
    Year: 2024
    Citations: 1
    Source: Physica Scripta 99 (6), 065236

  • 🧲 Exchange-coupling enhanced: Tailoring structural and magnetic properties of Dy iron garnet ferrite nanoparticles via La substitution
    Authors: Dipesh, A. Sharma, P. Kumar, J.V. Vas, R. Medwal, A.K. Srivastava
    Year: 2024
    Citations: 1
    Source: Journal of Materials Research, 1–18

  • 📊 On the equilibrium point and Hopf-Bifurcation analysis of GDP-national debt dynamics under delayed investment: A new DDE model
    Authors: Dipesh, Q. Chen, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 1
    Source: Alexandria Engineering Journal 91, 510–515

  • 🔍 Unlocking the Potential of Garnet Ferrites: A Comprehensive Review on Properties, Preparation Methods, and Applications
    Authors: A. Sharma, Dipesh
    Year: 2024
    Citations: 1
    Source: Materials Performance and Characterization 13 (1), 1–36

  • 🔋 Status and Prospects of GdIG Garnet Ferrites for Energy Storage Devices: A Review
    Authors: A. Sharma, Dipesh, H. Mahajan, A.K. Srivastava
    Year: 2024
    Citations: 1
    Source: Next Generation Materials for Sustainable Engineering, 174–186

  • 🌲 Delay DDE model of forest biomass and competition between wood‐based and synthetic‐based industries
    Authors: Dipesh, P. Kumar
    Year: 2023
    Citations: 1
    Source: Mathematical Methods in the Applied Sciences

  • 🫀 Modelling the Role of Delay in Blood Flow Dynamics in the Human Body using DDE
    Authors: Dipesh, P. Kumar
    Year: 2025
    Citations:
    Source: Physica A: Statistical Mechanics and its Applications, 130602

  • 💹 On modeling the impact of delay on stock pricing fluctuations using DDE
    Authors: Y. Wang, Dipesh, P. Kumar, H.M. Baskonus, W. Gao
    Year: 2025
    Citations:
    Source: Physica A: Statistical Mechanics and its Applications, 130601

  • 🍃 Modeling and analyzing delay in plant responses under toxicity
    Authors: Dipesh, P. Kumar, H.M. Baskonus
    Year: 2025
    Citations:
    Source: Advances in Computational Methods and Modeling for Science and Engineering

  • 🌱 Effect of time delay on directional and stability analysis of plant competition for allelochemicals study
    Authors: Dipesh, P. Kumar, H.M. Baskonus, A. Ciancio
    Year: 2025
    Citations:
    Source: Advances in Computational Methods and Modeling for Science and Engineering

 

Saeed Ahmad | Applied Mathematics | Best Researcher Award

Assist. Prof. Dr. Saeed Ahmad | Applied Mathematics | Best Researcher Award

Assistant Professor at University of Malakand Chakdara, Pakistan

Dr. Saeed Ahmad is a distinguished researcher and academic in the field of applied mathematics, with a strong focus on dynamical systems, nonlinear analysis, and mathematical biology 🔬📈. He earned his Ph.D. from the University of Nottingham, UK 🇬🇧, where his work on semifluxons in long Josephson junctions gained international recognition 🌍. With over 20 high-impact publications in reputable journals such as Chaos, Solitons and Fractals and Physical Review B 📚🧠, Dr. Ahmad has contributed significantly to the understanding of fractional differential models in epidemiology and physics. Currently serving as an Assistant Professor at the University of Malakand 🇵🇰, he also mentors M.Phil. and Ph.D. scholars, fostering future generations of researchers 🎓👨‍🏫. His expertise spans real and complex analysis, PDEs, and nonlinear waves, underlining his versatility in mathematics 🧮📊. A recipient of a prestigious HEC scholarship, his academic journey is a testament to excellence and dedication ⭐🏅.

Professional Profile

Google Scholar
Scopus Profile

Education 🎓📘

Dr. Saeed Ahmad holds an impressive academic background rooted in excellence and global exposure. He completed his Ph.D. in Applied Mathematics from the prestigious University of Nottingham, United Kingdom 🇬🇧, focusing on the mathematical modeling of semifluxons in long Josephson junctions—a complex area blending physics and nonlinear analysis 🔬📐. Prior to his doctoral studies, he obtained his M.Phil. and M.Sc. degrees in Mathematics from leading Pakistani institutions, laying a strong foundation in real and complex analysis, differential equations, and functional analysis 📖🧠. Throughout his academic journey, Dr. Ahmad consistently achieved top ranks and received multiple scholarships for his outstanding performance 🏅✍️. His educational credentials are a testimony to his dedication, intellectual rigor, and commitment to advancing mathematical sciences on both theoretical and applied fronts 📊📏.

Professional Experience 🧑‍🏫💼

Dr. Saeed Ahmad is currently serving as an Assistant Professor in the Department of Mathematics at the University of Malakand, Pakistan 🇵🇰, where he plays a pivotal role in teaching, mentoring, and leading research initiatives. With over a decade of academic experience, he has guided M.Phil. and Ph.D. students in areas like nonlinear dynamics, fractional calculus, and mathematical biology 🎓🔬. His teaching philosophy blends analytical precision with real-world relevance, inspiring students to approach mathematics as a powerful problem-solving tool 🧮🧑‍🎓. In addition to his academic duties, Dr. Ahmad actively contributes to curriculum development, seminars, and interdisciplinary collaborations across departments 🤝📋. He has also participated in international conferences and workshops, enhancing his global academic engagement 🌍📢. His professional journey reflects a balanced blend of scholarly depth and educational leadership, making him a cornerstone of the university’s mathematical research community 🏛️📚.

Research Interests 🔍🧠

Dr. Saeed Ahmad’s research interests lie at the intersection of applied mathematics, nonlinear analysis, and mathematical modeling 📈🧬. He specializes in dynamical systems, fractional differential equations, and nonlinear wave phenomena—applying these concepts to real-world systems in physics, epidemiology, and engineering 🔧⚛️. His work on Josephson junctions, a quantum mechanical device, has garnered international recognition and continues to influence modern theoretical physics 🧲🌐. Additionally, Dr. Ahmad explores the dynamics of infectious disease models using fractional calculus to improve predictive accuracy in biological systems 🧫🦠. He has authored over 20 impactful research papers in leading journals such as Chaos, Solitons & Fractals and Physical Review B, demonstrating both depth and innovation 📚🚀. His interdisciplinary approach bridges theoretical rigor with practical applications, positioning him as a thought leader in mathematical sciences and beyond 🔬🧮.

Awards and Honors 🏆🎖️

Dr. Saeed Ahmad has been recognized for his academic and research excellence with numerous awards and honors that highlight his contributions to mathematics both nationally and internationally 🌟🌐. He was the recipient of a prestigious Higher Education Commission (HEC) scholarship for his Ph.D. studies in the UK, a testament to his exceptional academic merit and potential 🇵🇰🎓. His research publications have earned accolades in the form of high-impact citations, reflecting their value within the global scientific community 📖💡. Additionally, Dr. Ahmad has been invited as a speaker at various international conferences, recognizing his expertise in applied mathematics and nonlinear dynamics 🎤📊. His achievements underscore a career built on dedication, innovation, and the pursuit of knowledge. These honors not only reflect individual excellence but also contribute to raising the academic profile of his home institution and country 🏅📘.

Conclusion 📝📌

In summary, Dr. Saeed Ahmad stands as a dedicated scholar, educator, and researcher whose work in applied mathematics continues to make a lasting impact on both theory and real-world applications 🌍🔢. With a solid educational foundation, substantial teaching experience, and a strong portfolio of research contributions, he exemplifies the spirit of academic excellence and innovation 🧑‍🏫🧠. His interdisciplinary focus bridges mathematics with physics and biology, demonstrating the versatility and necessity of mathematical tools in solving modern scientific challenges 🧮🔬. Dr. Ahmad’s recognition through awards and international collaborations further cements his reputation as a respected figure in the global mathematical community 🏆🌐. As he continues to mentor students and publish groundbreaking research, his contributions will undoubtedly shape the future of applied mathematics and inspire the next generation of mathematical thinkers 📚🚀.

Publications Top Notes

  • Controllability of pantograph-type nonlinear non-integer order differential system with input delay

    • Authors: I. Ahmad, S.F. Ahmad, G. ur Rahman, Y. Karaca, Z.A. Khan

    • Year: 2025

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Control Theory, Delay Systems, Fractional Calculus

  • Vectorial spatial solitons of left and right circularly polarized beams in a chiral atomic medium using complex light fields with spatial structure

    • Authors: R.T. Ahmad, B.A. Bacha, S.F. Ahmad, I. Ahmad

    • Year: 2025

    • Source: [Unspecified Journal]

    • Topic: Optics, Nonlinear Physics

  • Exposure to Acute Concentration of Malathion Induced Behavioral, Hematological, and Biochemical Toxicities in the Brain of Labeo rohita

    • Authors: S. Ullah, S.F. Ahmad, M.K. Ashraf, T. Iqbal, M.M. Azzam

    • Year: 2025

    • Source: Life

    • Topic: Ecotoxicology, Behavioral Neuroscience

  • Empowering silver and copper nanoparticles through aqueous fruit extract of Solanum xanthocarpum for sustainable advancements

    • Authors: G. Rahman, H. Fazal, A. Ullah, G. Zengin, A. Farid

    • Year: 2025

    • Citations: 6

    • Source: Biomass Conversion and Biorefinery

    • Topic: Green Chemistry, Nanotechnology

  • A new fractional infectious disease model under the non-singular Mittag–Leffler derivative

    • Authors: X. Liu, M. Ur Rahmamn, S.F. Ahmad, D.I. Baleanu, Y. Nadeem Anjam

    • Year: 2025

    • Citations: 15

    • Source: Waves in Random and Complex Media

    • Topic: Epidemic Modeling, Fractional Calculus

  • Control of scabies fluctuation during COVID-19 pandemic

    • Authors: Abdullah, S.F. Ahmad, W. Albalawi, N. Omer

    • Year: 2025

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Infectious Disease Modeling, Public Health

  • Stability analysis and optimal control of a generalized SIR epidemic model with harmonic mean type of incidence and nonlinear recovery rates

    • Authors: S.R. Chawla, S.F. Ahmad, A. Khan, K.S. Nisar, H.M. Ali

    • Year: 2024

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Mathematical Epidemiology, Optimal Control

  • Coherent manipulation of vectorial soliton beam in sodium like atomic medium

    • Authors: B.A. Bacha, S.F. Ahmad, R.T. Ahmad, I. Ahmad

    • Year: 2024

    • Citations: 3

    • Source: Chaos, Solitons and Fractals

    • Topic: Quantum Optics, Solitons

  • Atom localization by damping spectrum of surface plasmon polariton waves

    • Authors: I. Shah, M.D.L. De la Sen, S.F. Ahmad, T.A. Alrebdi, A.H. Abdel-Aty

    • Year: 2024

    • Citations: 1

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Plasmonics, Atomic Physics

  • Beneficial Effects of Natural Alkaloids from Berberis glaucocarpa as Antidiabetic Agents: An In Vitro, In Silico, and In Vivo Approach

    • Authors: M. Alamzeb, S.T.A. Shah, H. Hussain, R.Q. Ullah, E.A. Ali

    • Year: 2024

    • Citations: 6

    • Source: ACS Omega

    • Topic: Drug Discovery, Natural Products, Diabetes

 

Alexander Bratus | Applied Mathematics | Best Researcher Award

Prof. Dr. Alexander Bratus | Applied Mathematics | Best Researcher Award

Department of digital control of transport at Russia University of Transport, Russia.

Prof. Dr. Alexander Bratus is a distinguished researcher in mathematical biology, dynamical systems, and control theory, with significant contributions to replicator dynamics, evolutionary adaptation, and immune system modeling. His extensive research, spanning biological systems, cancer therapy, and ecological modeling, is reflected in numerous high-impact publications in journals like Mathematical Biosciences, Journal of Mathematical Biology, and Physica A. He has co-authored influential books, including Dynamical Systems and Biological Models and Mathematical Models Evolution and Dynamics of Replicator Systems. His interdisciplinary approach integrates mathematics, biology, and medicine, making his work highly relevant to applied sciences. Collaborating with leading experts worldwide, he has advanced the understanding of complex biological and medical systems. With his dedication to research excellence, impactful publications, and interdisciplinary innovations, Prof. Bratus is a strong contender for the Best Researcher Award, contributing significantly to both theoretical and applied mathematical sciences.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Prof. Dr. Alexander Bratus earned his advanced degrees in mathematics and applied sciences from prestigious institutions in Russia. He pursued his Ph.D. in Mathematical Modeling and Dynamical Systems, focusing on the application of differential equations and optimization techniques in biological and ecological systems. His doctoral research laid the foundation for his extensive work in evolutionary dynamics, control systems, and mathematical biology. He continued his academic journey with a postdoctoral fellowship, where he expanded his expertise in replicator systems, optimization theory, and stochastic processes. His strong mathematical foundation, coupled with interdisciplinary exposure, has enabled him to develop groundbreaking research in biological evolution, immune system modeling, and cancer therapy optimization. Over the years, he has mentored numerous graduate students and young researchers, contributing to the next generation of mathematical scientists. His educational background has been instrumental in shaping his research career, positioning him as a leader in applied mathematics and computational biology.

Professional Experience

Prof. Dr. Alexander Bratus is a professor and researcher in the Department of Digital Control of Transport at Russia University of Transport. With decades of experience in academia and research, he has played a pivotal role in mathematical modeling, applied dynamical systems, and control theory. He has led multiple research projects, collaborating with leading international scientists to develop mathematical models in biomedicine, ecology, and evolutionary game theory. His professional journey includes serving as a principal investigator in multidisciplinary projects, editorial board memberships in renowned scientific journals, and keynote speaker invitations at global conferences. His expertise extends beyond theoretical research, as he has actively contributed to industrial and healthcare applications through mathematical optimization and system control. His leadership in scientific communities has fostered advancements in mathematical biology and computational methods, establishing him as an influential figure in applied mathematics, mathematical physics, and bioinformatics.

Research Interest

Prof. Dr. Alexander Bratus’s research interests lie in mathematical modeling, dynamical systems, and evolutionary biology, with a strong focus on biological and ecological applications. His work explores the mathematical structures underlying biological evolution, immune system interactions, and cancer therapy strategies. He is particularly interested in replicator dynamics, game-theoretic models, and optimal control methods for biomedical systems. His studies on feedback control in leukemia therapy, antigen-driven immune responses, and tumor growth dynamics have led to innovative approaches in personalized medicine and disease treatment. His interdisciplinary research extends to transport system dynamics, economic growth modeling, and nonlinear distributed systems, reflecting his broad scientific expertise. Through computational simulations and analytical frameworks, he continues to bridge mathematics with real-world applications, making significant contributions to healthcare, ecology, and optimization problems. His diverse research portfolio highlights his commitment to advancing theoretical and applied mathematics in modern science.

Awards and Honors

Throughout his career, Prof. Dr. Alexander Bratus has received numerous awards and recognitions for his outstanding contributions to mathematical modeling and applied sciences. His work in evolutionary dynamics, control theory, and computational biology has been recognized with prestigious research grants, international fellowships, and best paper awards. He has been honored by leading mathematical societies and scientific organizations, acknowledging his innovative contributions to interdisciplinary mathematics. He has also been a recipient of excellence in teaching and mentoring awards, reflecting his dedication to academic leadership and student mentorship. His involvement in editorial boards of top-tier scientific journals, invited lectures at major conferences, and advisory roles in research institutions further solidifies his status as a renowned mathematical scientist. His impactful research and international collaborations continue to shape the future of mathematical and computational sciences, earning him global recognition.

Conclusion

Prof. Dr. Alexander Bratus is a highly accomplished mathematician and researcher, whose work has significantly influenced mathematical biology, control systems, and evolutionary game theory. His extensive contributions to replicator dynamics, immune system modeling, and cancer therapy optimization highlight his interdisciplinary approach and scientific leadership. With a strong academic background, remarkable professional experience, and an impressive list of publications, he has established himself as a pioneer in applied mathematics. His dedication to advancing mathematical sciences, mentoring young researchers, and fostering international collaborations makes him an ideal candidate for the Best Researcher Award. His groundbreaking research continues to bridge the gap between theoretical mathematics and real-world applications, impacting biomedicine, ecology, and engineering. As a globally recognized scientist, he remains committed to solving complex problems through mathematical innovation, leaving a lasting impact on the scientific community.

Publications Top Noted

  • Title: Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis

    • Authors: A.S. Bratus’, G.A. Bocharov, D. Grebennikov

    • Year: 2024

    • Citations: 0

    • Source: Mathematics

  • Title: Food Webs and the Principle of Evolutionary Adaptation

    • Authors: A.S. Bratus’, S. Drozhzhin, A.V. Korushkina, A.S. Novozhilov

    • Year: 2024

    • Citations: 0

    • Source: Physica A: Statistical Mechanics and its Applications

  • Title: On a Hypercycle Equation with Infinitely Many Members

    • Authors: A.S. Bratus’, O.S. Chmereva, I.Y. Yegorov, A.S. Novozhilov

    • Year: 2023

    • Citations: 0

    • Source: Journal of Mathematical Analysis and Applications

  • Title: Existence of Closed Trajectories in Lotka-Volterra Systems in Rⁿ

    • Authors: A.S. Bratus’, V.V. Tikhomirov, R. Isaev

    • Year: Unknown

    • Citations: 0

    • Source: Book Chapter (No source information available)

  • Title: Mathematical Model of Pancreatic Cancer Cell Dynamics Considering the Set of Sequential Mutations and Interaction with the Immune System

    • Authors: A.S. Bratus’, N.R. Leslie, M. Chamo, G.A. Bocharov, D. Yurchenko

    • Year: 2022

    • Citations: 0

    • Source: Mathematics

  • Title: Mathematical Model of the Infection Spread in Transport Based on the Theory of Porous Medium

    • Authors: A. Ocheretyanaya, A.S. Bratus’

    • Year: 2022

    • Citations: 0

    • Source: Advances in Systems Science and Applications

  • Title: Open Quasispecies Systems: New Approach to Evolutionary Adaptation

    • Authors: I. Samokhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2022

    • Citations: 1

    • Source: Chinese Journal of Physics

  • Title: Fitness Optimization and Evolution of Permanent Replicator Systems

    • Authors: S. Drozhzhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2021

    • Citations: 2

    • Source: Journal of Mathematical Biology

  • Title: Dynamical Systems and Models in Biology

    • Authors: A.S. Bratus’, A.S. Novozhilov, A.P. Platonov

    • Year: 2010

    • Citations: 140

    • Source: Fizmatlit (in Russian)

  • Title: Optimal Bounded Control of Steady-State Random Vibrations

    • Authors: M.F. Dimentberg, D.V. Iourtchenko

    • Year: 2000

    • Citations: 64

    • Source: Probabilistic Engineering Mechanics

  • Title: Bounded Parametric Control of Random Vibrations

    • Authors: M.F. Dimentberg, A.S. Bratus’

    • Year: 2000

    • Citations: 54

    • Source: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

  • Title: Bimodal Solutions in Eigenvalue Optimization Problems

    • Authors: A.S. Bratus’, A.P. Seiranian

    • Year: 1983

    • Citations: 49

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko, M. Noori

    • Year: 2000

    • Citations: 44

    • Source: Dynamics and Control

  • Title: On Strategies on a Mathematical Model for Leukemia Therapy

    • Authors: A.S. Bratus’, E. Fimmel, Y. Todorov, Y.S. Semenov, F. Nuernberg

    • Year: 2012

    • Citations: 43

    • Source: Nonlinear Analysis: Real World Applications

  • Title: Optimal Bounded Response Control for a Second-Order System Under a White-Noise Excitation

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko

    • Year: 2000

    • Citations: 43

    • Source: Journal of Vibration and Control

  • Title: Optimal Radiation Fractionation for Low-Grade Gliomas: Insights from a Mathematical Model

    • Authors: T. Galochkina, A. Bratus, V.M. Pérez-García

    • Year: 2015

    • Citations: 33

    • Source: Mathematical Biosciences

  • Title: Optimal Control Synthesis in Therapy of Solid Tumor Growth

    • Authors: A.S. Bratus’, E.S. Chumerina

    • Year: 2008

    • Citations: 30

    • Source: Computational Mathematics and Mathematical Physics

  • Title: Solution of the Feedback Control Problem in the Mathematical Model of Leukemia Therapy

    • Authors: A. Bratus, Y. Todorov, I. Yegorov, D. Yurchenko

    • Year: 2013

    • Citations: 28

    • Source: Journal of Optimization Theory and Applications

  • Title: Stabilizing and Destabilizing Effects in Non-Conservative Systems

    • Authors: N.V. Banichuk, A.S. Bratus, A.D. Myshkis

    • Year: 1989

    • Citations: 26

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Linear Algebra of the Permutation Invariant Crow-Kimura Model of Prebiotic Evolution

    • Authors: A.S. Bratus, A.S. Novozhilov, Y.S. Semenov

    • Year: 2014

    • Citations: 25

    • Source: Mathematical Biosciences

 

 

Leonid Litinskii | Applied Mathematics | Best Researcher Award

Dr. Leonid Litinskii | Applied Mathematics | Best Researcher Award

Retired at Scientific Research Institute for System Analysis (formerly), Russia

Dr. Leonid Litinskii is a retired principal research scientist with an extensive academic and professional background in mathematical methods and statistical physics. He graduated from Kharkiv State University, Ukraine, and held prominent positions at the Institute for High Pressure Physics, Russian Academy of Sciences, and the Scientific Research Institute for System Analysis. With over 50 years of research experience, Dr. Litinskii is known for his pioneering work in developing the theory of vector neuron networks and the n-vicinity method for calculating the partition function in the Ising model. He has published around 100 papers in renowned scientific journals and contributed to the study of eigenvalues in the Ising model’s connection matrix. Additionally, Dr. Litinskii has made significant contributions to the analysis of quadratic functionals in large binary variable systems. A member of the European Neural Networks Society, he has left a lasting impact on the fields of mathematics and neural networks.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Leonid Litinskii completed his education at Kharkiv State University (now V. N. Karazin Kharkiv National University) in Ukraine, where he studied mathematics from 1966 to 1971. This solid foundation in mathematics paved the way for his distinguished career as a scientific researcher. His academic journey has always been focused on applying mathematical methods to complex scientific problems, particularly in statistical physics and neural networks. His studies and early research experiences contributed significantly to his future breakthroughs in these fields.

Professional Experience

Dr. Litinskii’s professional career spans over five decades, with notable research positions at esteemed institutions. He began his career as a scientific researcher at the Institute for High Pressure Physics of the Russian Academy of Sciences from 1973 to 2001. From 2001 to 2023, he worked as a Principal Research Scientist at the Scientific Research Institute for System Analysis, also within the Russian Academy of Sciences. Throughout his career, Dr. Litinskii has contributed extensively to the fields of mathematical physics and neural networks.

Research Interest

Dr. Litinskii’s research interests are primarily centered around mathematical methods in statistical physics and their application to neural networks. He has developed the theory of vector neuron networks and formulated the n-vicinity method for calculating the partition function of the Ising model. His work on the properties of eigenvalues in the Ising model’s connection matrix has been a significant contribution to the field of computational physics. Additionally, Dr. Litinskii has focused on the study of quadratic functionals in large binary variable systems, advancing mathematical modeling techniques.

Award and Honor

Throughout his career, Dr. Litinskii has earned recognition for his groundbreaking work in neural networks and statistical physics. While the details of specific awards and honors are not provided, his long tenure as a Principal Research Scientist and his role in advancing the fields of mathematics and neural networks have earned him respect and recognition in the scientific community. He is a member of the European Neural Networks Society, further emphasizing his distinguished position in the research community.

Conclusion

Dr. Leonid Litinskii’s career is a testament to dedication, innovation, and scholarly excellence. With over 50 years of research experience, his contributions to mathematical physics, neural networks, and statistical physics have been substantial. His work in developing the theory of vector neuron networks and the n-vicinity method has had a lasting impact on these fields. Though he has not yet focused on patents or practical applications, his theoretical contributions remain foundational. Dr. Litinskii’s legacy is one of a leading thinker who has shaped the advancement of mathematical and physical sciences.

Publications Top Noted

 

 

Shiqing Zhang | Applied Mathematics | Excellence in Applied Mathematics

Prof. Shiqing Zhang | Applied Mathematics | Excellence in Applied Mathematics

Math Department at Sichuan University, China

Dr. Shiqing Zhang is a distinguished professor of mathematics at Sichuan University, specializing in Nonlinear Functional Analysis, Celestial Mechanics, Differential Equations, and Mathematical Physics. With a Ph.D. from Nankai University (1991), he has made significant contributions to applied mathematics, particularly in optimization algorithms, N-body problems, and mathematical modeling. His extensive publication record in high-impact journals and multiple National Science Foundation of China (NSFC) research grants highlight his sustained research excellence. His work has applications in astrophysics, computational mathematics, and engineering. Recognized early as a Distinguished Young Teacher at Chongqing University (1996), Dr. Zhang has since continued to advance the field with groundbreaking research. While his academic contributions are remarkable, expanding industry collaborations and international recognition could further enhance his impact. Overall, his expertise and achievements make him a strong candidate for the Excellence in Applied Mathematics Award, with research that bridges theoretical mathematics and real-world applications.

Professional Profile 

Scopus Profile

Education 

Dr. Shiqing Zhang has a strong academic background in mathematics, beginning with his B.S. degree from Chongqing University in 1985, followed by a Master’s degree from the same institution in 1987. He pursued advanced studies in mathematical sciences and earned his Ph.D. from Nankai University in 1991. Throughout his academic journey, Dr. Zhang has focused on deep theoretical aspects of mathematics, particularly in applied fields such as functional analysis, celestial mechanics, and differential equations. His education at renowned Chinese universities laid the foundation for his extensive contributions to mathematical research. His academic progression reflects a deep commitment to advancing mathematical knowledge and solving complex mathematical problems. With rigorous training in both pure and applied mathematics, Dr. Zhang’s educational background provided him with the analytical skills and problem-solving abilities necessary to excel in research, making him a leading figure in applied mathematics and a strong candidate for prestigious academic recognition.

Professional Experience 

Dr. Shiqing Zhang has built a distinguished academic career spanning over three decades. He began his professional journey at Chongqing University, where he served as an Assistant Professor (1988–1993) and later as an Associate Professor (1993–1997). His exceptional contributions to mathematics led to his promotion as a Professor at Chongqing University in 1997, a position he held until 2002. He then moved to Yangzhou University (2002–2005) as a Professor before joining Sichuan University in 2005, where he has been a Professor of Mathematics ever since. His professional trajectory demonstrates a continuous commitment to academia, teaching, and research. Over the years, he has played a crucial role in mentoring students, leading research initiatives, and contributing to the advancement of applied mathematics. His vast teaching experience, combined with his research contributions, establishes him as a well-respected authority in the field of mathematical sciences.

Research Interest

Dr. Shiqing Zhang’s research interests lie in Nonlinear Functional Analysis, Celestial Mechanics, Differential Equations, and Mathematical Physics. His work focuses on developing analytical methods to solve complex problems in applied mathematics. He has made significant contributions to the study of central configurations in celestial mechanics, periodic solutions in Hamiltonian systems, and optimization problems using variational methods. His research extends to iterative algorithms, monotone inclusion problems, and function space analysis, which have applications in physics, engineering, and computational sciences. Dr. Zhang has published extensively in high-impact mathematical journals, providing innovative solutions to long-standing problems. His work on mountain pass theorem applications, action-minimizing solutions, and functional inequalities showcases his depth in applied mathematics. By bridging theory with real-world applications, his research continues to shape developments in both pure and applied mathematical disciplines, reinforcing his position as a leading researcher in the field.

Awards and Honors 

Dr. Shiqing Zhang has been recognized for his contributions to mathematics through numerous research grants and honors. He has received multiple research grants from the National Natural Science Foundation of China (NSFC), spanning several years, including major funding from 1996 to 2024. These grants have supported his research in applied mathematics, particularly in nonlinear functional analysis and celestial mechanics. In recognition of his excellence in teaching and research, he was awarded the title of Distinguished Young Teacher at Chongqing University in 1996, highlighting his impact on mathematics education. His ability to secure continuous funding reflects the high quality and significance of his research contributions. Dr. Zhang’s strong academic credentials, numerous publications, and funded projects illustrate his expertise and commitment to mathematical advancements. These accolades confirm his role as a key figure in applied mathematics, making him a distinguished candidate for awards recognizing excellence in research.

Conclusion

Dr. Shiqing Zhang’s extensive contributions to applied mathematics, nonlinear functional analysis, and celestial mechanics establish him as a leading researcher in the field. With a solid educational foundation from top Chinese universities and a distinguished academic career spanning over three decades, he has significantly impacted both research and education. His numerous research grants from NSFC, coupled with high-quality publications in renowned mathematical journals, demonstrate the depth and influence of his work. His recognition as a Distinguished Young Teacher at Chongqing University further underscores his contributions to academia. Dr. Zhang’s research in differential equations, optimization, and mathematical physics bridges theoretical advancements with practical applications, enhancing the understanding of complex mathematical models. Given his academic excellence, research achievements, and long-standing contributions, he is a highly suitable candidate for the Excellence in Applied Mathematics Award, reflecting his dedication to advancing mathematical sciences globally.

Publications Top Noted

 

LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. Lin-Tian Luh is a distinguished mathematician specializing in radial basis functions, approximation theory, numerical mathematics, and topology. With a Ph.D. from the University of Göttingen, he has made significant contributions to the field, particularly in developing error bounds for high-dimensional interpolation and advancing the choice theory of shape parameters. Over his academic career at Providence University, where he served as a lecturer, associate professor, and full professor, he has been instrumental in enhancing research environments and collaborating internationally, notably with Professor R. Schaback. Dr. Luh has published extensively in high-impact journals, presented at major awards worldwide, and held editorial roles in reputable mathematical journals. His groundbreaking work on shape parameter selection has gained international recognition, solving longstanding challenges in the field. Honored multiple times for research excellence, he continues to push the boundaries of numerical analysis and computational mathematics, making profound impacts on scientific advancements.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Lin-Tian Luh obtained his Ph.D. in Mathematics from the University of Göttingen, Germany, where he studied under leading experts in numerical analysis and approximation theory. His doctoral research focused on radial basis functions and their applications in high-dimensional interpolation. Prior to his Ph.D., he completed his undergraduate and master’s studies in Taiwan, building a strong foundation in pure and applied mathematics. Throughout his academic journey, he demonstrated exceptional analytical skills and a deep passion for solving complex mathematical problems. His international education provided him with a broad perspective, allowing him to integrate diverse mathematical techniques into his research. Exposure to rigorous mathematical training at Göttingen further refined his expertise in error estimation and shape parameter selection. His academic achievements laid the groundwork for a successful career in both theoretical and applied mathematics, enabling him to contribute significantly to the advancement of numerical methods in scientific computation.

Professional Experience

Dr. Lin-Tian Luh has had a distinguished academic career, spanning decades of research, teaching, and mentorship. He began as a lecturer at Providence University in Taiwan, where he quickly established himself as an authority in numerical mathematics. Rising through the ranks to associate professor and later full professor, he played a pivotal role in shaping the university’s mathematics curriculum and fostering a strong research environment. He has collaborated extensively with international scholars, including Professor R. Schaback, contributing to groundbreaking advancements in radial basis function interpolation. Dr. Luh has also held visiting research positions at prestigious institutions, further strengthening his global academic impact. His dedication to teaching has inspired numerous students to pursue research in computational mathematics. Beyond academia, he has served on editorial boards of leading mathematical journals and as a reviewer for high-impact publications, solidifying his reputation as a key figure in numerical analysis and approximation theory.

Research Interest

Dr. Lin-Tian Luh’s research interests lie in numerical analysis, radial basis function (RBF) interpolation, approximation theory, and topology. He has made substantial contributions to high-dimensional interpolation techniques, particularly in error estimation and shape parameter selection for RBF methods. His work on developing optimal strategies for shape parameter choice has addressed longstanding challenges in computational mathematics, influencing applications in engineering, data science, and machine learning. He is also deeply engaged in the theoretical aspects of approximation theory, exploring new methods to improve the efficiency and accuracy of numerical algorithms. Dr. Luh’s research extends into applied topology, where he investigates connections between geometric structures and computational models. His interdisciplinary approach has led to collaborations across various fields, reinforcing the importance of mathematical theory in real-world problem-solving. With numerous publications in top-tier journals, his work continues to shape the evolving landscape of numerical mathematics and scientific computation.

Awards and Honors

Dr. Lin-Tian Luh has received multiple accolades for his exceptional contributions to mathematics, particularly in numerical analysis and approximation theory. He has been recognized by prestigious mathematical societies and institutions for his pioneering work in radial basis function interpolation. His research on shape parameter selection has earned international acclaim, leading to invitations as a keynote speaker at major mathematical awards. Dr. Luh has also been honored with excellence in research awards from Providence University, where his work has significantly advanced the institution’s academic reputation. In addition, he has received grants and fellowships supporting his innovative research, further validating his impact in the field. His editorial contributions to leading mathematical journals have also been acknowledged, highlighting his influence in shaping contemporary numerical mathematics. These honors reflect his dedication, originality, and profound impact on both theoretical and applied mathematics, reinforcing his legacy as a leader in computational and approximation theory.

Conclusion

Dr. Lin-Tian Luh is a renowned mathematician whose work in numerical analysis, radial basis function interpolation, and approximation theory has significantly influenced the field. With a strong educational background from the University of Göttingen and an illustrious academic career at Providence University, he has played a crucial role in advancing research and mentoring future generations of mathematicians. His collaborations with international scholars and contributions to high-dimensional interpolation techniques have provided groundbreaking insights into shape parameter selection and error estimation. Recognized globally for his research excellence, he has received multiple awards and honors, further establishing his prominence in mathematical sciences. Dr. Luh’s work continues to inspire and drive progress in numerical computation, bridging theoretical advancements with practical applications. His dedication to expanding mathematical knowledge and fostering innovation ensures that his contributions will have a lasting impact on the field, shaping the future of approximation theory and scientific computing.

Publications Top Noted

  • The Shape Parameter in the Shifted Surface Spline—A Sharp and Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2024
    • Source: Mathematics (MDPI)
  • Solving Poisson Equations by the MN-Curve Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • The Shape Parameter in the Shifted Surface Spline—An Easily Accessible Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameter—A Purely Scattered Data Approach

    • Author: Lin-Tian Luh
    • Year: 2020
    • Source: Engineering Analysis with Boundary Elements (EABE)
  • The Choice of the Shape Parameter–A Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2019
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Mystery of the Shape Parameter III

    • Author: Lin-Tian Luh
    • Year: 2016
    • Source: Applied and Computational Harmonic Analysis (Elsevier)
  • The Mystery of the Shape Parameter IV

    • Author: Lin-Tian Luh
    • Year: 2014
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function II

    • Author: Lin-Tian Luh
    • Year: 2013
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Computers and Mathematics with Applications (Elsevier)
  • The Shape Parameter in the Shifted Surface Spline III

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • Evenly Spaced Data Points and Radial Basis Functions

    • Author: Lin-Tian Luh
    • Year: 2011
    • Source: WIT Transactions on Modelling and Simulation
  • The Crucial Constants in the Exponential-Type Error Estimates for Gaussian Interpolation

    • Author: Lin-Tian Luh
    • Year: 2008
    • Source: Analysis in Theory and Applications
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation (Preprint)

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Multidisciplinary Digital Publishing Institute (MDPI Preprints)

 

Aviv Gibali | Applied Mathematics | Best Researcher Award

Prof. Aviv Gibali | Applied Mathematics | Best Researcher Award

Researcher at Holon Institute of Technology, Israel

Dr. Aviv Gibali is a distinguished mathematician and researcher specializing in applied mathematics, optimization, and variational inequalities. He holds a Ph.D. from the Technion – Israel Institute of Technology and has completed postdoctoral studies at the Fraunhofer Institute for Industrial Mathematics in Germany. Currently serving as the Head of the Department of Applied Mathematics at HIT – Holon Institute of Technology, he has previously held leadership roles at ORT Braude College of Engineering. Dr. Gibali has made significant contributions through numerous scholarly publications, award presentations, and editorial positions in prestigious journals. His expertise spans optimization algorithms, superiorization techniques, and mathematical modeling with applications in science and engineering. Actively engaged in international collaborations and academic committees, he has also received multiple awards for his impactful research. His dedication to advancing mathematical methodologies and their real-world applications establishes him as a leading figure in the field.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Aviv Gibali holds a strong academic background in mathematics, with degrees from prestigious institutions. He earned his Ph.D. in Mathematics from the Technion – Israel Institute of Technology in 2012, where his doctoral research focused on algorithms for solving variational inequalities and their applications under the supervision of Prof. Simeon Reich and Prof. Yair Censor. Prior to that, he completed his M.Sc. in Mathematics at the University of Haifa in 2008, working on iterative algorithms for solving variational inequality problems under the guidance of Prof. Yair Censor. His academic journey began with a B.Sc. in Mathematics from the University of Haifa in 2005. Following his Ph.D., Dr. Gibali pursued postdoctoral research in optimization at the Fraunhofer Institute for Industrial Mathematics (ITWM) in Kaiserslautern, Germany, from 2012 to 2014. His educational foundation has equipped him with deep expertise in mathematical modeling, optimization, and computational algorithms.

Professional Experience

Dr. Aviv Gibali is an accomplished mathematician and researcher specializing in optimization, variational inequalities, and applied mathematics. He currently serves as the Head of the Department of Applied Mathematics at HIT – Holon Institute of Technology and holds the rank of Associate Professor. Previously, he was an Associate Professor and Head of the Mathematics Department at ORT Braude College of Engineering. Dr. Gibali completed his Ph.D. at The Technion – Israel Institute of Technology and pursued postdoctoral research at the Fraunhofer Institute for Industrial Mathematics in Germany. His extensive academic contributions include serving as an associate editor for multiple prestigious journals, organizing international awards, and collaborating with leading institutions worldwide. With numerous invited talks, scientific visits, and interdisciplinary research projects, he has significantly advanced the field of mathematical optimization. His expertise spans theoretical advancements and industrial applications, earning him multiple awards and recognition in applied and computational mathematics.

Research Interest

Dr. Aviv Gibali’s research interests lie at the intersection of applied mathematics, optimization, and computational methods, with a strong focus on projection algorithms, variational inequalities, and convex feasibility problems. His work spans both theoretical advancements and real-world applications, particularly in industrial mathematics, medical imaging, radiation therapy planning, and data science. He has made significant contributions to superiorization techniques, an innovative approach to improving iterative algorithms for constrained optimization problems. Dr. Gibali is also actively engaged in developing and analyzing numerical algorithms for large-scale optimization, leveraging mathematical modeling to solve complex problems in engineering, machine learning, and healthcare. His interdisciplinary collaborations with international research institutions and industry partners enhance the practical impact of his studies. With a keen interest in mathematical education, he also contributes to innovative pedagogical methods, fostering a new generation of researchers in applied and computational mathematics.

Award and Honor

Dr. Aviv Gibali, a distinguished mathematician and researcher, has been widely recognized for his outstanding contributions to applied mathematics and optimization. He has received numerous accolades, including the prestigious Fourth Most Cited Article Award from Optimization Methods and Software in 2021, highlighting the impact of his research. In 2020, he secured First Prize in the Hackathon on Free Writing Home Exams, organized by Tel-Aviv University and Shenkar, demonstrating his innovative approach to education. His scholarly excellence has also been acknowledged through esteemed fellowships such as the Mathematics for Industry Network’s Short-Term Scientific Mission (2018) in Germany and the Austria-Israel Academic Network Innsbruck (AIANI) Fellowship (2017). With an extensive academic career, editorial roles in leading journals, and significant contributions to industrial mathematics, Dr. Gibali’s work continues to shape the field, earning him widespread recognition and respect within the global mathematical community.

Conclusion

Dr. Aviv Gibali is a distinguished researcher in applied mathematics, with a prolific academic career spanning optimization, variational inequalities, and superiorization techniques. His extensive contributions include over a decade of impactful research, international collaborations, editorial roles in leading mathematical journals, and leadership positions in academia. As an associate professor and head of the Department of Applied Mathematics at HIT – Holon Institute of Technology, Dr. Gibali has played a pivotal role in advancing mathematical research and fostering industry-academic partnerships. His numerous scientific visits, award organizations, and editorial engagements reflect his dedication to global knowledge dissemination. Recognized with prestigious awards and citations, he has demonstrated excellence in both theoretical advancements and real-world applications. While his achievements are remarkable, continued exploration of interdisciplinary applications and mentorship initiatives could further enhance his academic influence. Dr. Gibali’s scholarly impact and leadership make him a highly deserving candidate for the Best Researcher Award.

Publications Top Noted

  • Multidimensional Evolution Effects on Non-Cooperative Strategic Games
    Authors: Shipra Singh, Aviv Gibali, Simeon Reich
    Year: 2024
    Source: Mathematics
  • Resolvent-Free Method for Solving Monotone Inclusions
    Authors: Yan Tang, Aviv Gibali
    Year: 2023
    Source: Axioms
  • Special Issue “Symmetry in Optimization and Control with Real-World Applications”
    Authors: Kok Lay Teo, Aviv Gibali, Yong Wu
    Year: 2022
    Source: Symmetry
  • New Self-Adaptive Inertial-Like Proximal Point Methods for the Split Common Null Point Problem
    Authors: Yan Tang, Yeyu Zhang, Aviv Gibali
    Year: 2021
    Source: Symmetry
  • Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications
    Authors: Shipra Singh, Aviv Gibali, Simeon Reich
    Year: 2021
    Source: Mathematics
  • An Analytic and Numerical Investigation of a Differential Game
    Authors: Aviv Gibali, Oleg Kelis
    Year: 2021
    Source: Axioms
  • Projected-Reflected Subgradient-Extragradient Method and Its Real-World Applications
    Authors: Aviv Gibali, O.S. Iyiola, Lanre Akinyemi, Yekini
    Year: 2021
    Source: Symmetry
  • A Symmetric FBF Method for Solving Monotone Inclusions
    Authors: Aviv Gibali, Yekini
    Year: 2020
    Source: Symmetry
  • Inertial Krasnoselskii–Mann Method in Banach Spaces
    Authors: Yekini Shehu, Aviv Gibali
    Year: 2020
    Source: Mathematics