Saeed Ahmad | Applied Mathematics | Best Researcher Award

Assist. Prof. Dr. Saeed Ahmad | Applied Mathematics | Best Researcher Award

Assistant Professor at University of Malakand Chakdara, Pakistan

Dr. Saeed Ahmad is a distinguished researcher and academic in the field of applied mathematics, with a strong focus on dynamical systems, nonlinear analysis, and mathematical biology ๐Ÿ”ฌ๐Ÿ“ˆ. He earned his Ph.D. from the University of Nottingham, UK ๐Ÿ‡ฌ๐Ÿ‡ง, where his work on semifluxons in long Josephson junctions gained international recognition ๐ŸŒ. With over 20 high-impact publications in reputable journals such as Chaos, Solitons and Fractals and Physical Review B ๐Ÿ“š๐Ÿง , Dr. Ahmad has contributed significantly to the understanding of fractional differential models in epidemiology and physics. Currently serving as an Assistant Professor at the University of Malakand ๐Ÿ‡ต๐Ÿ‡ฐ, he also mentors M.Phil. and Ph.D. scholars, fostering future generations of researchers ๐ŸŽ“๐Ÿ‘จโ€๐Ÿซ. His expertise spans real and complex analysis, PDEs, and nonlinear waves, underlining his versatility in mathematics ๐Ÿงฎ๐Ÿ“Š. A recipient of a prestigious HEC scholarship, his academic journey is a testament to excellence and dedication โญ๐Ÿ….

Professional Profile

Google Scholar
Scopus Profile

Education ๐ŸŽ“๐Ÿ“˜

Dr. Saeed Ahmad holds an impressive academic background rooted in excellence and global exposure. He completed his Ph.D. in Applied Mathematics from the prestigious University of Nottingham, United Kingdom ๐Ÿ‡ฌ๐Ÿ‡ง, focusing on the mathematical modeling of semifluxons in long Josephson junctionsโ€”a complex area blending physics and nonlinear analysis ๐Ÿ”ฌ๐Ÿ“. Prior to his doctoral studies, he obtained his M.Phil. and M.Sc. degrees in Mathematics from leading Pakistani institutions, laying a strong foundation in real and complex analysis, differential equations, and functional analysis ๐Ÿ“–๐Ÿง . Throughout his academic journey, Dr. Ahmad consistently achieved top ranks and received multiple scholarships for his outstanding performance ๐Ÿ…โœ๏ธ. His educational credentials are a testimony to his dedication, intellectual rigor, and commitment to advancing mathematical sciences on both theoretical and applied fronts ๐Ÿ“Š๐Ÿ“.

Professional Experience ๐Ÿง‘โ€๐Ÿซ๐Ÿ’ผ

Dr. Saeed Ahmad is currently serving as an Assistant Professor in the Department of Mathematics at the University of Malakand, Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ, where he plays a pivotal role in teaching, mentoring, and leading research initiatives. With over a decade of academic experience, he has guided M.Phil. and Ph.D. students in areas like nonlinear dynamics, fractional calculus, and mathematical biology ๐ŸŽ“๐Ÿ”ฌ. His teaching philosophy blends analytical precision with real-world relevance, inspiring students to approach mathematics as a powerful problem-solving tool ๐Ÿงฎ๐Ÿง‘โ€๐ŸŽ“. In addition to his academic duties, Dr. Ahmad actively contributes to curriculum development, seminars, and interdisciplinary collaborations across departments ๐Ÿค๐Ÿ“‹. He has also participated in international conferences and workshops, enhancing his global academic engagement ๐ŸŒ๐Ÿ“ข. His professional journey reflects a balanced blend of scholarly depth and educational leadership, making him a cornerstone of the universityโ€™s mathematical research community ๐Ÿ›๏ธ๐Ÿ“š.

Research Interests ๐Ÿ”๐Ÿง 

Dr. Saeed Ahmadโ€™s research interests lie at the intersection of applied mathematics, nonlinear analysis, and mathematical modeling ๐Ÿ“ˆ๐Ÿงฌ. He specializes in dynamical systems, fractional differential equations, and nonlinear wave phenomenaโ€”applying these concepts to real-world systems in physics, epidemiology, and engineering ๐Ÿ”งโš›๏ธ. His work on Josephson junctions, a quantum mechanical device, has garnered international recognition and continues to influence modern theoretical physics ๐Ÿงฒ๐ŸŒ. Additionally, Dr. Ahmad explores the dynamics of infectious disease models using fractional calculus to improve predictive accuracy in biological systems ๐Ÿงซ๐Ÿฆ . He has authored over 20 impactful research papers in leading journals such as Chaos, Solitons & Fractals and Physical Review B, demonstrating both depth and innovation ๐Ÿ“š๐Ÿš€. His interdisciplinary approach bridges theoretical rigor with practical applications, positioning him as a thought leader in mathematical sciences and beyond ๐Ÿ”ฌ๐Ÿงฎ.

Awards and Honors ๐Ÿ†๐ŸŽ–๏ธ

Dr. Saeed Ahmad has been recognized for his academic and research excellence with numerous awards and honors that highlight his contributions to mathematics both nationally and internationally ๐ŸŒŸ๐ŸŒ. He was the recipient of a prestigious Higher Education Commission (HEC) scholarship for his Ph.D. studies in the UK, a testament to his exceptional academic merit and potential ๐Ÿ‡ต๐Ÿ‡ฐ๐ŸŽ“. His research publications have earned accolades in the form of high-impact citations, reflecting their value within the global scientific community ๐Ÿ“–๐Ÿ’ก. Additionally, Dr. Ahmad has been invited as a speaker at various international conferences, recognizing his expertise in applied mathematics and nonlinear dynamics ๐ŸŽค๐Ÿ“Š. His achievements underscore a career built on dedication, innovation, and the pursuit of knowledge. These honors not only reflect individual excellence but also contribute to raising the academic profile of his home institution and country ๐Ÿ…๐Ÿ“˜.

Conclusion ๐Ÿ“๐Ÿ“Œ

In summary, Dr. Saeed Ahmad stands as a dedicated scholar, educator, and researcher whose work in applied mathematics continues to make a lasting impact on both theory and real-world applications ๐ŸŒ๐Ÿ”ข. With a solid educational foundation, substantial teaching experience, and a strong portfolio of research contributions, he exemplifies the spirit of academic excellence and innovation ๐Ÿง‘โ€๐Ÿซ๐Ÿง . His interdisciplinary focus bridges mathematics with physics and biology, demonstrating the versatility and necessity of mathematical tools in solving modern scientific challenges ๐Ÿงฎ๐Ÿ”ฌ. Dr. Ahmadโ€™s recognition through awards and international collaborations further cements his reputation as a respected figure in the global mathematical community ๐Ÿ†๐ŸŒ. As he continues to mentor students and publish groundbreaking research, his contributions will undoubtedly shape the future of applied mathematics and inspire the next generation of mathematical thinkers ๐Ÿ“š๐Ÿš€.

Publications Top Notes

  • Controllability of pantograph-type nonlinear non-integer order differential system with input delay

    • Authors: I. Ahmad, S.F. Ahmad, G. ur Rahman, Y. Karaca, Z.A. Khan

    • Year: 2025

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Control Theory, Delay Systems, Fractional Calculus

  • Vectorial spatial solitons of left and right circularly polarized beams in a chiral atomic medium using complex light fields with spatial structure

    • Authors: R.T. Ahmad, B.A. Bacha, S.F. Ahmad, I. Ahmad

    • Year: 2025

    • Source: [Unspecified Journal]

    • Topic: Optics, Nonlinear Physics

  • Exposure to Acute Concentration of Malathion Induced Behavioral, Hematological, and Biochemical Toxicities in the Brain of Labeo rohita

    • Authors: S. Ullah, S.F. Ahmad, M.K. Ashraf, T. Iqbal, M.M. Azzam

    • Year: 2025

    • Source: Life

    • Topic: Ecotoxicology, Behavioral Neuroscience

  • Empowering silver and copper nanoparticles through aqueous fruit extract of Solanum xanthocarpum for sustainable advancements

    • Authors: G. Rahman, H. Fazal, A. Ullah, G. Zengin, A. Farid

    • Year: 2025

    • Citations: 6

    • Source: Biomass Conversion and Biorefinery

    • Topic: Green Chemistry, Nanotechnology

  • A new fractional infectious disease model under the non-singular Mittagโ€“Leffler derivative

    • Authors: X. Liu, M. Ur Rahmamn, S.F. Ahmad, D.I. Baleanu, Y. Nadeem Anjam

    • Year: 2025

    • Citations: 15

    • Source: Waves in Random and Complex Media

    • Topic: Epidemic Modeling, Fractional Calculus

  • Control of scabies fluctuation during COVID-19 pandemic

    • Authors: Abdullah, S.F. Ahmad, W. Albalawi, N. Omer

    • Year: 2025

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Infectious Disease Modeling, Public Health

  • Stability analysis and optimal control of a generalized SIR epidemic model with harmonic mean type of incidence and nonlinear recovery rates

    • Authors: S.R. Chawla, S.F. Ahmad, A. Khan, K.S. Nisar, H.M. Ali

    • Year: 2024

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Mathematical Epidemiology, Optimal Control

  • Coherent manipulation of vectorial soliton beam in sodium like atomic medium

    • Authors: B.A. Bacha, S.F. Ahmad, R.T. Ahmad, I. Ahmad

    • Year: 2024

    • Citations: 3

    • Source: Chaos, Solitons and Fractals

    • Topic: Quantum Optics, Solitons

  • Atom localization by damping spectrum of surface plasmon polariton waves

    • Authors: I. Shah, M.D.L. De la Sen, S.F. Ahmad, T.A. Alrebdi, A.H. Abdel-Aty

    • Year: 2024

    • Citations: 1

    • Source: AEJ – Alexandria Engineering Journal

    • Topic: Plasmonics, Atomic Physics

  • Beneficial Effects of Natural Alkaloids from Berberis glaucocarpa as Antidiabetic Agents: An In Vitro, In Silico, and In Vivo Approach

    • Authors: M. Alamzeb, S.T.A. Shah, H. Hussain, R.Q. Ullah, E.A. Ali

    • Year: 2024

    • Citations: 6

    • Source: ACS Omega

    • Topic: Drug Discovery, Natural Products, Diabetes

 

Leonid Litinskii | Applied Mathematics | Best Researcher Award

Dr. Leonid Litinskii | Applied Mathematics | Best Researcher Award

Retired at Scientific Research Institute for System Analysis (formerly), Russia

Dr. Leonid Litinskii is a retired principal research scientist with an extensive academic and professional background in mathematical methods and statistical physics. He graduated from Kharkiv State University, Ukraine, and held prominent positions at the Institute for High Pressure Physics, Russian Academy of Sciences, and the Scientific Research Institute for System Analysis. With over 50 years of research experience, Dr. Litinskii is known for his pioneering work in developing the theory of vector neuron networks and the n-vicinity method for calculating the partition function in the Ising model. He has published around 100 papers in renowned scientific journals and contributed to the study of eigenvalues in the Ising model’s connection matrix. Additionally, Dr. Litinskii has made significant contributions to the analysis of quadratic functionals in large binary variable systems. A member of the European Neural Networks Society, he has left a lasting impact on the fields of mathematics and neural networks.

Professional Profileย 

Scopus Profile
ORCID Profile

Education

Dr. Leonid Litinskii completed his education at Kharkiv State University (now V. N. Karazin Kharkiv National University) in Ukraine, where he studied mathematics from 1966 to 1971. This solid foundation in mathematics paved the way for his distinguished career as a scientific researcher. His academic journey has always been focused on applying mathematical methods to complex scientific problems, particularly in statistical physics and neural networks. His studies and early research experiences contributed significantly to his future breakthroughs in these fields.

Professional Experience

Dr. Litinskiiโ€™s professional career spans over five decades, with notable research positions at esteemed institutions. He began his career as a scientific researcher at the Institute for High Pressure Physics of the Russian Academy of Sciences from 1973 to 2001. From 2001 to 2023, he worked as a Principal Research Scientist at the Scientific Research Institute for System Analysis, also within the Russian Academy of Sciences. Throughout his career, Dr. Litinskii has contributed extensively to the fields of mathematical physics and neural networks.

Research Interest

Dr. Litinskiiโ€™s research interests are primarily centered around mathematical methods in statistical physics and their application to neural networks. He has developed the theory of vector neuron networks and formulated the n-vicinity method for calculating the partition function of the Ising model. His work on the properties of eigenvalues in the Ising model’s connection matrix has been a significant contribution to the field of computational physics. Additionally, Dr. Litinskii has focused on the study of quadratic functionals in large binary variable systems, advancing mathematical modeling techniques.

Award and Honor

Throughout his career, Dr. Litinskii has earned recognition for his groundbreaking work in neural networks and statistical physics. While the details of specific awards and honors are not provided, his long tenure as a Principal Research Scientist and his role in advancing the fields of mathematics and neural networks have earned him respect and recognition in the scientific community. He is a member of the European Neural Networks Society, further emphasizing his distinguished position in the research community.

Conclusion

Dr. Leonid Litinskiiโ€™s career is a testament to dedication, innovation, and scholarly excellence. With over 50 years of research experience, his contributions to mathematical physics, neural networks, and statistical physics have been substantial. His work in developing the theory of vector neuron networks and the n-vicinity method has had a lasting impact on these fields. Though he has not yet focused on patents or practical applications, his theoretical contributions remain foundational. Dr. Litinskiiโ€™s legacy is one of a leading thinker who has shaped the advancement of mathematical and physical sciences.

Publications Top Noted

 

 

Sabah Kausar | Applied Mathematics | Young Scientist Award

Dr. Sabah Kausar | Applied Mathematics | Young Scientist Award

University of Gujrat, Pakistan

Dr. Sabah Kausar is a dedicated physicist and researcher specializing in nanomaterials, photocatalysis, and environmental sustainability. With an MPhil in Physics from the University of Gujrat, her research focuses on synthesizing and characterizing advanced nanocomposites for applications in water purification, antimicrobial treatments, and food preservation. She has expertise in XRD, SEM, FTIR, PL, UV-Vis spectroscopy, and EDX, demonstrating a strong technical background. Her publications on Ag-doped BiVOโ‚„ and BiVOโ‚„/ZnO nanocomposites highlight significant advancements in photocatalytic degradation and extended shelf life of fruits. Passionate about interdisciplinary research, Dr. Kausarโ€™s work bridges nanotechnology, environmental science, and material physics. She aspires to expand her contributions through international collaborations, high-impact publications, and practical industrial applications. With a keen focus on sustainability and innovation, she is a promising young scientist making impactful contributions to applied physics and nanotechnology.

Professional Profileย 

Education

Dr. Sabah Kausar holds an MPhil in Physics from the University of Gujrat, where she conducted pioneering research on nanomaterials and their photocatalytic and antimicrobial properties. Her thesis focused on the synthesis and characterization of BiVOโ‚„-based nanocomposites for enhancing the shelf life of fruits and environmental remediation. Prior to her MPhil, she earned a BS (Honors) in Physics, where she developed a strong foundation in experimental, numerical, and conceptual physics. Her academic journey has been marked by excellence in material physics, spectroscopy, and nanotechnology applications. Additionally, she is currently pursuing a Bachelor of Education (BEd), reinforcing her ability to contribute to academia. With a solid educational background, she has developed expertise in advanced characterization techniques such as XRD, SEM, FTIR, PL, and UV-Vis spectroscopy, which are essential for analyzing the structural, optical, and morphological properties of nanomaterials.

Professional Experience

Dr. Sabah Kausar is an emerging scientist with expertise in photocatalytic nanomaterials, environmental physics, and material characterization. During her MPhil research, she synthesized and tested Ag-doped BiVOโ‚„ and BiVOโ‚„/ZnO nanocomposites to improve photocatalytic activity and antimicrobial performance. Her research has practical implications in water purification, environmental remediation, and food preservation. She has collaborated with interdisciplinary teams to analyze nanoparticle efficiency using XRD, SEM, FTIR, and UV-Vis spectroscopy. She has also contributed to scientific literature through high-impact publications focusing on nanotechnology-based solutions for sustainability. As a physicist, she excels in team collaboration, research execution, and analytical problem-solving. Beyond research, her pursuit of a BEd degree equips her with academic and teaching skills, enhancing her ability to mentor and educate future scientists. With a passion for advancing nanomaterials for environmental and biomedical applications, she is poised to make significant contributions to applied physics and sustainable technology.

Research Interest

Dr. Sabah Kausarโ€™s research interests lie in nanotechnology, photocatalysis, environmental sustainability, and antimicrobial nanomaterials. She focuses on synthesizing and characterizing functional nanocomposites for applications in water purification, energy harvesting, and food preservation. Her expertise extends to advanced material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL), and UV-Vis analysis, which she employs to explore optical, structural, and chemical properties of materials. She is particularly interested in the development of eco-friendly nanomaterials to combat water pollution and food spoilage. Her work on TiOโ‚‚/BiVOโ‚„ nanocomposites for dye and antibiotic degradation has demonstrated significant potential for environmental applications. Additionally, she is keen on interdisciplinary research collaborations to bridge the gap between material science, environmental physics, and biomedicine. With a strong foundation in experimental physics and nanotechnology, she aspires to contribute to cutting-edge advancements in sustainable science and clean energy.

Awards and Honors

Dr. Sabah Kausar has earned recognition for her innovative contributions to nanotechnology and environmental sustainability. Her MPhil research on BiVOโ‚„-based nanomaterials has been widely acknowledged for its practical implications in photocatalysis, antimicrobial applications, and food preservation. She has presented her work at national and international awards, showcasing her expertise in material characterization and sustainable nanotechnology. Additionally, her high-impact publications in peer-reviewed journals reflect her strong research capabilities and commitment to scientific advancement. Her ability to bridge physics, chemistry, and environmental science has positioned her as a promising researcher. As she continues to develop innovative nanomaterials for real-world applications, she remains committed to academic excellence and collaborative research projects. With her growing contributions to scientific knowledge and sustainability-focused solutions, she is a strong candidate for Young Scientist Awards and similar recognitions in the fields of nanotechnology, applied physics, and environmental research.

Conclusion

Dr. Sabah Kausar is a rising physicist and nanotechnology researcher committed to solving environmental and sustainability challenges through innovative material science. With a strong academic background, hands-on research experience, and a passion for applied physics, she has contributed to the development of photocatalytic and antimicrobial nanomaterials. Her work has significant implications for clean energy, water purification, and food preservation, demonstrating the power of interdisciplinary scientific advancements. As a young scientist, she continues to explore new frontiers in nanotechnology, with a focus on sustainable applications. Her ability to integrate material characterization, experimental physics, and environmental research makes her a promising scientific leader. With continued collaborations, high-impact research, and academic contributions, she is well-positioned to make lasting contributions in physics, nanotechnology, and sustainability science.

Publications Top Noted

 

Muhammad Marwan | Applied Mathematics | Best Researcher Award

Assoc. Prof. Dr. Muhammad Marwan | Applied Mathematics | Best Researcher Award

Associate professor at Linyi university, China

Dr. Marwan Muhammad is a distinguished researcher in applied mathematics, specializing in bifurcation theory, chaos, fractals, mobile chaotic robots, control theory, synchronization, and secure communication. With an H-index of 11, he has published extensively in high-impact journals such as Fractals, Nonlinear Dynamics, and IEEE-IoT. Currently an Associate Professor at Linyi University, China, he has over a decade of teaching and research experience, including a postdoctoral fellowship at Zhejiang Normal University (ZJNU). His work integrates mathematical theory with practical applications in cryptography, robotics, and UAV dynamics. Dr. Muhammad has successfully supervised multiple Masterโ€™s students and collaborated on funded research projects. His global academic exposure, particularly in China and Pakistan, enhances his research perspective. While his contributions are significant, further international collaborations, industry engagement, and competitive research grants would solidify his standing as a leading expert in computational and applied mathematics.

Professional Profile

Google Scholar
ORCID Profile

Education

Dr. Marwan Muhammad holds a Ph.D. in Applied Mathematics from the Institute of Space Technology, Pakistan, where he specialized in nonlinear dynamics and stability analysis. His doctoral research focused on applying nonlinear tools to chaotic systems. He earned an M.S. in Mathematics from COMSATS Institute of Information Technology, Pakistan, with a thesis on Fejรฉr-Hadamard inequalities for convex functions. His academic journey began with a B.S. in Mathematics from Islamia College University, Peshawar, where he was awarded a Gold Medal for his outstanding performance. His early education includes an HSSC and SSC from the Peshawar Board, securing top grades. Throughout his academic career, Dr. Muhammad demonstrated a strong foundation in theoretical and applied mathematics, equipping him with the expertise needed to excel in research and teaching. His education has played a pivotal role in shaping his research trajectory, particularly in bifurcation theory, chaos, fractals, and control systems.

Professional Experience

Dr. Marwan Muhammad has over a decade of experience in academia and research. He is currently an Associate Professor at Linyi University, China, where he teaches and supervises research in applied mathematics. Previously, he completed a postdoctoral fellowship at Zhejiang Normal University (ZJNU), China, focusing on advanced topics in nonlinear dynamics. His professional journey includes serving as a Lecturer at Islamabad Model Postgraduate College, Riphah International University, and the Higher Education Department of Peshawar. His teaching portfolio covers a broad range of mathematical disciplines, including computational mathematics, dynamical systems, and mathematical modeling. Additionally, he has worked on a research project funded by the Higher Education Commission (HEC) of Pakistan, leading to several high-impact publications. His international exposure, particularly in China and Pakistan, has enriched his academic perspective, allowing him to integrate diverse mathematical techniques into his research and contribute significantly to the global scientific community.

Research Interest

Dr. Marwan Muhammadโ€™s research focuses on nonlinear dynamics, bifurcation theory, chaos, fractals, control theory, synchronization, and secure communication. His work in mobile chaotic robots and multi-scroll attractors has applications in cryptography, robotics, and artificial intelligence. He is particularly interested in the mathematical modeling of complex systems, including UAV dynamics, plasma systems, and satellite chaotic systems. His contributions extend to fractional calculus, where he has analyzed tumor-immune interactions and porous medium equations. His research also explores numerical methods for solving chaotic systems, emphasizing computational efficiency and accuracy. Dr. Muhammadโ€™s interdisciplinary approach integrates mathematics, physics, and engineering, leading to innovative solutions for real-world problems. His recent publications in journals like Fractals and Nonlinear Dynamics demonstrate his ability to bridge theoretical insights with practical applications, positioning him as a key contributor to the fields of computational and applied mathematics.

Awards and Honors

Dr. Marwan Muhammad has been recognized for his academic excellence and research contributions. He was awarded a Gold Medal for securing the highest distinction in his undergraduate studies at Islamia College University, Peshawar. His research has been published in prestigious journals, highlighting his impact in the field of applied mathematics. His contributions to nonlinear dynamics and chaotic systems have earned him invitations to collaborate on international research projects. Additionally, his supervision of Masterโ€™s students and successful research collaborations reflect his commitment to academic mentorship. His work has received recognition from funding agencies such as the Higher Education Commission (HEC) of Pakistan, under which he successfully led research projects. While his accolades are notable, continued participation in international awards, securing competitive research grants, and expanding collaborations with leading global institutions would further elevate his reputation as a distinguished researcher in computational and applied mathematics.

Conclusion

Dr. Marwan Muhammad is an accomplished mathematician whose research in nonlinear dynamics, chaos, and fractals has significantly contributed to applied mathematics. With a strong educational foundation, international research experience, and extensive teaching background, he has established himself as a key figure in computational mathematics. His work has practical applications in cryptography, robotics, and control systems, making it relevant to both academia and industry. While his publications and collaborations are impressive, expanding his research network, securing additional funding, and engaging in interdisciplinary projects could further enhance his impact. His dedication to mentoring students and advancing mathematical knowledge underscores his potential for continued success. With sustained efforts, Dr. Muhammad is poised to become a leading authority in his field, driving innovation and discovery in mathematical sciences.

Publications Top Noted

  • Coexisting attractor in a gyrostat chaotic system via basin of attraction and synchronization of two nonidentical mechanical systems
    Authors: M. Marwan, V. Dos Santos, M.Z. Abidin, A. Xiong
    Year: 2022
    Citations: 11
    Source: Mathematics, 10(11), 1914

  • Retardational effect and Hopf bifurcations in a new attitude system of quad-rotor unmanned aerial vehicle
    Authors: M. Fiaz, M. Aqeel, M. Marwan, M. Sabir
    Year: 2021
    Citations: 11
    Source: International Journal of Bifurcation and Chaos, 31(09), 2150127

  • Control and numerical analysis for cancer chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, M. Shaukat
    Year: 2020
    Citations: 11
    Source: Archive of Applied Mechanics, 90, 2597-2608

  • Image cryptography communication using FPAA-based multi-scroll chaotic system
    Authors: K. Karawanich, J. Chimnoy, F. Khateb, M. Marwan, P. Prommee
    Year: 2024
    Citations: 8
    Source: Nonlinear Dynamics, 112(6), 4951-4976

  • Hopf bifurcation analysis for liquid-filled gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
    Authors: M. Sabir, S. Ahmad, M. Marwan
    Year: 2021
    Citations: 8
    Source: Open Physics, 19(1), 539-550

  • Investigation of fractional-ordered tumor-immune interaction model via fractional-order derivative
    Authors: G. Ali, M. Marwan, U.U. Rahman, M. Hleili
    Year: 2024
    Citations: 7
    Source: Fractals, 32(06), 1-10

  • Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems
    Authors: M. Marwan, M.Z. Abidin, H. Kalsoom, M. Han
    Year: 2022
    Citations: 7
    Source: Fractal and Fractional, 6(4), 189

  • Generation of multi-scrolls in coronavirus disease 2019 (COVID-19) chaotic system and its impact on the zero-COVID policy
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 6
    Source: Scientific Reports, 13, 13954

  • Novel approaches for solving fuzzy fractional partial differential equations
    Authors: M. Osman, Y. Xia, M. Marwan, O.A. Omer
    Year: 2022
    Citations: 6
    Source: Fractal and Fractional, 6(11), 656

  • Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications
    Authors: H. Kalsoom, M. Vivas-Cortez, M.Z. Abidin, M. Marwan, Z.A. Khan
    Year: 2022
    Citations: 6
    Source: Symmetry, 14(7), 1449

  • Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputsโ€”application to chaos synchronization
    Authors: L. Moysis, M. Tripathi, M.K. Gupta, M. Marwan, C. Volos
    Year: 2022
    Citations: 6
    Source: Archives of Control Sciences, 32

  • Mixed obstacle avoidance in mobile chaotic robots with directional keypads and its non-identical generalized synchronization
    Authors: M. Marwan, F. Li, S. Ahmad, N. Wang
    Year: 2025
    Citations: 5
    Source: Nonlinear Dynamics, 113(3), 2377-2390

  • Chaotic behavior of Lorenz-based chemical system under the influence of fractals
    Authors: M. Marwan, A. Xiong, M. Han, R. Khan
    Year: 2024
    Citations: 4
    Source: Match Communications in Mathematical and Computer Chemistry, 91(2), 307-336

  • Control analysis of virotherapy chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, A. Rafiq
    Year: 2022
    Citations: 4
    Source: Journal of Biological Dynamics, 16(1), 585-595

  • Hidden covers (wings) in the fractals of chaotic systems using advanced Julia function
    Authors: M. Marwan, M. Han, M. Osman
    Year: 2023
    Citations: 3
    Source: Fractals, 31(09), 2350125

  • Generalized external synchronization of networks based on clustered pandemic systemsโ€”The approach of COVID-19 towards influenza
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 3
    Source: PLOS ONE, 18(10), e0288796

  • Existence of Solution and Selfโ€Exciting Attractor in the Fractionalโ€Order Gyrostat Dynamical System
    Authors: M. Marwan, G. Ali, R. Khan
    Year: 2022
    Citations: 3
    Source: Complexity, 2022(1), 3505634

  • On the analytical approach of codimension-three degenerate Bogdanov-Takens (BT) bifurcation in satellite dynamical system
    Authors: M. Marwan, M.Z. Abidin
    Year: 2023
    Citations: 2
    Source: Journal of Nonlinear Modeling and Analysis

  • On the global well-posedness of rotating magnetohydrodynamics equations with fractional dissipation
    Authors: M.Z. Abidin, M. Marwan, H. Kalsoom, O.A. Omer
    Year: 2022
    Citations: 2
    Source: Fractal and Fractional, 6(6), 340

  • Semi-analytical analysis of a fractional-order pandemic dynamical model using non-local operator
    Authors: M. Marwan, G. Ali, F. Li, S.A.O. Abdallah, T. Saidani
    Year: 2025
    Source: Fractals

 

Ran Zhang | Applied Mathematics | Best Researcher Award

Dr. Ran Zhang | Applied Mathematics | Best Researcher Award

Researcher at Nanjing University of Posts and Telecommunications, China

Ran Zhang is a dedicated researcher specializing in differential operator spectrum theory and inverse problems, with a strong academic record and impactful contributions to mathematical analysis. He has published extensively in prestigious journals such as Journal of Differential Equations, Applied Mathematics Letters, and Mathematical Methods in Applied Sciences, addressing critical problems in Sturm-Liouville operators, Dirac systems, and inverse spectral analysis. As the host of national research projects, including those funded by the National Natural Science Foundation of China and Jiangsu Provincial Natural Science Foundation of China, he has demonstrated leadership in advancing theoretical mathematics. His work has significant implications for mathematical physics and engineering applications. While already an accomplished researcher, expanding into applied interdisciplinary domains and increasing global collaborations could further enhance his influence. With a strong foundation in theoretical and computational approaches, Ran Zhang continues to push the boundaries of mathematical research, making him a valuable contributor to the field.

Professional Profile

Scopus Profile
ORCID Profile

Education

Ran Zhang has established a strong academic foundation in mathematics, particularly in differential operator spectrum theory and inverse problems. His educational journey has been marked by rigorous training in advanced mathematical techniques, equipping him with the analytical and computational skills necessary for solving complex problems in spectral analysis. Throughout his academic career, he has specialized in inverse problems, Sturm-Liouville operators, and Dirac systems, which are fundamental to mathematical physics and engineering applications. His deep understanding of functional analysis and operator theory has enabled him to contribute innovative solutions to long-standing mathematical challenges. His education has been further enriched through collaborations with esteemed mathematicians and participation in high-level mathematical research projects. This solid academic background has laid the groundwork for his contributions to the field, positioning him as a leading researcher in spectral theory and inverse problems.

Professional Experience

Ran Zhang has built an impressive professional career focused on mathematical research and inverse spectral analysis. As a host of research projects funded by the National Natural Science Foundation of China and the Jiangsu Provincial Natural Science Foundation of China, he has played a pivotal role in advancing theoretical mathematics. His work has been recognized in esteemed mathematical journals, reflecting the high impact of his research in spectral theory, Sturm-Liouville operators, and discontinuous differential equations. He has actively contributed to solving complex mathematical challenges and has worked closely with research teams, collaborating with renowned mathematicians across institutions. His experience extends beyond academia, as his research has potential applications in engineering, quantum mechanics, and applied physics. His ability to bridge theoretical mathematics with practical applications makes him a distinguished figure in the field. As he progresses in his career, expanding into interdisciplinary research and mentoring young mathematicians could further solidify his professional legacy.

Research Interest

Ran Zhang’s primary research interest lies in differential operator spectrum theory and its inverse problems, focusing on Sturm-Liouville operators, Dirac systems, and inverse spectral analysis. His work explores the uniqueness, reconstruction, and solvability of inverse problems, often dealing with differential operators that exhibit discontinuities. He is particularly interested in solving inverse nodal and resonance problems, which have profound implications in mathematical physics, quantum mechanics, and engineering applications. His research also extends to periodic and impulsive differential equations, addressing their spectral properties and reconstruction techniques. By developing new mathematical models and analytical methods, he aims to enhance the theoretical understanding of inverse problems while providing practical solutions for computational mathematics. His contributions to spectral theory play a vital role in advancing numerical methods and mathematical modeling, further strengthening the connection between pure and applied mathematics. His future research aims to expand into multidisciplinary applications, fostering collaborations across physics, engineering, and computational sciences.

Awards and Honors

Ran Zhangโ€™s research excellence has been recognized through several prestigious honors and awards. As the recipient of funding from the National Natural Science Foundation of China and the Jiangsu Provincial Natural Science Foundation of China, he has demonstrated his ability to lead impactful research projects. His published works in top-tier mathematical journals, such as the Journal of Differential Equations, Applied Mathematics Letters, and Mathematical Methods in Applied Sciences, underscore his significant contributions to spectral theory and inverse problems. His research achievements have also been acknowledged through collaborations with internationally renowned mathematicians, highlighting his growing influence in the mathematical community. His ability to solve complex problems in spectral analysis has positioned him as a leading researcher in the field. With an increasing number of citations and recognition from the global mathematics community, Ran Zhang continues to make substantial contributions that are shaping modern mathematical research.

Conclusion

Ran Zhang is a distinguished researcher whose work in differential operator spectrum theory and inverse problems has made a profound impact on mathematical sciences. His strong academic background, extensive research experience, and leadership in national research projects position him as a key figure in mathematical analysis. His research has provided significant advancements in spectral theory, Sturm-Liouville operators, and inverse nodal problems, which are crucial for engineering, quantum mechanics, and mathematical physics. While he has already gained significant recognition, expanding his work into interdisciplinary applications and international collaborations could further elevate his influence. His commitment to mathematical innovation, coupled with his problem-solving skills and dedication to research, ensures that he will continue to contribute valuable insights to the field. As he moves forward, his work will likely shape the future of spectral analysis, making lasting contributions to both theoretical and applied mathematics.

Publications Top Noted

  • Title: Inverse spectral problems for the Dirac operator with complex-valued weight and discontinuity
    Authors: Ran Zhang, Chuan-Fu Yang, Natalia P. Bondarenko
    Year: 2021
    Citation: Journal of Differential Equations, 278: 100-110
    Source: Journal of Differential Equations

  • Title: Uniqueness and reconstruction of the periodic Strum-Liouville operator with a finite number of discontinuities
    Authors: Ran Zhang, Kai Wang, Chuan-Fu Yang
    Year: 2024
    Citation: Applied Mathematics Letters, 147: 108853
    Source: Applied Mathematics Letters

  • Title: Uniqueness theorems for the impulsive Dirac operator with discontinuity
    Authors: Ran Zhang, Chuan-Fu Yang
    Year: 2022
    Citation: Analysis and Mathematical Physics, 12(1): 1-16
    Source: Analysis and Mathematical Physics

  • Title: Determination of the impulsive Sturm-Liouville operator from a set of eigenvalues
    Authors: Ran Zhang, Xiao-Chuan Xu, Chuan-Fu Yang, Natalia P. Bondarenko
    Year: 2020
    Citation: Journal of Inverse and Ill-posed Problems, 28(3): 341-348
    Source: Journal of Inverse and Ill-posed Problems

  • Title: Solving the inverse problems for discontinuous periodic Strum-Liouville operator by the method of rotation
    Authors: Ran Zhang, Kai Wang, Chuan-Fu Yang
    Year: 2024
    Citation: Results in Mathematics, 79(1): 49
    Source: Results in Mathematics

  • Title: Ambarzumyan-type theorem for the impulsive Sturm-Liouville operator
    Authors: Ran Zhang, Chuan-Fu Yang
    Year: 2021
    Citation: Journal of Inverse and Ill-posed Problems, 29(1): 21-25
    Source: Journal of Inverse and Ill-posed Problems

  • Title: Solvability of an inverse problem for discontinuous Sturm-Liouville operators
    Authors: Ran Zhang, Natalia P. Bondarenko, Chuan-Fu Yang
    Year: 2021
    Citation: Mathematical Methods in Applied Sciences, 44(1): 124-139
    Source: Mathematical Methods in Applied Sciences

  • Title: Reconstruction of the Strum-Liouville operator with periodic boundary conditions and discontinuity
    Authors: Ran Zhang, Chuan-Fu Yang
    Year: 2022
    Citation: Mathematical Methods in Applied Sciences, 45(8): 4244-4251
    Source: Mathematical Methods in Applied Sciences

  • Title: Determination of the impulsive Dirac systems from a set of eigenvalues
    Authors: Ran Zhang, Chuan-Fu Yang, Kai Wang
    Year: 2023
    Citation: Mathematics, 11(19): 4086
    Source: Mathematics

  • Title: Inverse nodal problem for the Sturm-Liouville operator with a weight
    Authors: Ran Zhang, Murat Sat, Chuan-Fu Yang
    Year: 2020
    Citation: Applied Mathematics – A Journal of Chinese Universities Series B, 35(2): 193-202
    Source: Applied Mathematics – A Journal of Chinese Universities Series B

 

Ghanmi Abdeljabbar | Fractional calculus | Mathematical Engineering Excellence Award

Prof. Ghanmi Abdeljabbar | Fractional calculus | Mathematical Engineering Excellence Award

Professor in Mathematics at Tunis El Manar University, Tunisia

Dr. Abdeljabbar Ghanmi is an accomplished mathematician specializing in differential equations, fractional calculus, variational methods, and mathematical analysis. Currently an Associate Professor at the University of Jeddah, Saudi Arabia, he has an extensive academic and research background, having previously held positions in Tunisia. His research focuses on partial differential equations, dynamical systems, nonlinear systems, and optimization, with numerous publications in high-impact journals. Dr. Ghanmi collaborates with renowned mathematicians such as Prof. Vicentiu Radulescu and Prof. Duลกan D. Repovลก, reflecting his global research engagement. He has supervised multiple doctoral and masterโ€™s students, contributing significantly to mathematical education. His work has gained substantial recognition, evidenced by citations and active participation in international awards. In addition to his research, he serves as a reviewer for scientific journals. Dr. Ghanmi’s contributions to mathematical sciences, mentorship, and interdisciplinary collaborations position him as a distinguished researcher in his field.

Professional Profileย 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Abdeljabbar Ghanmi holds a strong academic background in mathematics, having earned his Ph.D. in Applied Mathematics from a prestigious institution. His doctoral research focused on differential equations, variational methods, and mathematical analysis, laying the foundation for his expertise in nonlinear systems and dynamical models. Prior to his Ph.D., he obtained a Master’s degree in Mathematical Sciences, where he explored advanced topics in functional analysis and optimization. His undergraduate studies provided a rigorous foundation in pure and applied mathematics, enabling him to develop a deep understanding of fundamental mathematical principles. Throughout his academic journey, Dr. Ghanmi has demonstrated exceptional analytical skills, excelling in complex problem-solving and mathematical modeling. His educational achievements reflect his commitment to advancing mathematical research, and his interdisciplinary approach bridges theoretical mathematics with real-world applications. His academic credentials have prepared him for a distinguished career in research and education, fostering innovation in mathematical sciences.

Professional Experience

Dr. Abdeljabbar Ghanmi is an Associate Professor at the University of Jeddah, Saudi Arabia, where he actively engages in teaching, research, and academic mentorship. Before joining the University of Jeddah, he held academic positions in Tunisia, contributing to the development of mathematics education and research. With years of experience in higher education, he has taught advanced courses in differential equations, mathematical analysis, and optimization, shaping the next generation of mathematicians. His role extends beyond teaching, as he supervises Ph.D. and masterโ€™s students, guiding them in their research endeavors. Dr. Ghanmi is a dedicated researcher, collaborating with international experts in mathematics to produce high-quality publications in peer-reviewed journals. Additionally, he serves as a reviewer for prestigious scientific journals, ensuring the integrity and advancement of mathematical research. His professional experience highlights his commitment to both education and the expansion of mathematical knowledge through innovative research and scholarly contributions.

Research Interest

Dr. Abdeljabbar Ghanmiโ€™s research interests span a wide range of mathematical disciplines, with a particular focus on differential equations, fractional calculus, variational methods, and nonlinear dynamical systems. His work explores the theoretical and applied aspects of mathematical analysis, contributing to the advancement of knowledge in functional spaces, optimization techniques, and stability theory. His research integrates classical and modern mathematical approaches to solve complex problems in engineering, physics, and applied sciences. Dr. Ghanmi actively collaborates with leading mathematicians such as Prof. Vicentiu Radulescu and Prof. Duลกan D. Repovลก, engaging in interdisciplinary research that bridges pure mathematics with practical applications. His studies on fractional differential equations and dynamical systems have significant implications in modeling real-world phenomena. His dedication to research is evident through his numerous high-impact publications, award presentations, and involvement in peer-reviewing processes, ensuring the continuous evolution of mathematical sciences.

Awards and Honors

Dr. Abdeljabbar Ghanmi has received multiple recognitions for his outstanding contributions to mathematics. His research has been acknowledged through various academic and research awards, reflecting his impact on mathematical sciences. He has been invited to speak at international awards, demonstrating the significance of his contributions to the global mathematical community. His work has garnered significant citations, highlighting its influence on contemporary mathematical research. In addition to his scholarly achievements, Dr. Ghanmi has received recognition from esteemed institutions for his dedication to mentoring students and advancing mathematical education. His collaborations with leading researchers and his active participation in editorial and reviewing committees further underscore his reputation as a distinguished mathematician. These accolades reflect his unwavering commitment to excellence in research, education, and the broader mathematical community, solidifying his position as a respected figure in the field of applied mathematics.

Conclusion

Dr. Abdeljabbar Ghanmi is a highly respected mathematician whose expertise in differential equations, fractional calculus, and mathematical analysis has significantly contributed to the advancement of mathematical sciences. As an Associate Professor at the University of Jeddah, he has played a crucial role in shaping the academic and research landscape through his mentorship, teaching, and scholarly work. His research collaborations with leading mathematicians and his extensive publication record underscore his dedication to expanding mathematical knowledge. Through his contributions to mathematical education and his commitment to interdisciplinary research, Dr. Ghanmi has made a lasting impact on the field. His numerous awards and recognitions attest to the quality and significance of his work. With a career dedicated to both theoretical and applied mathematics, Dr. Ghanmi continues to be an influential figure, fostering innovation and excellence in research and education. His contributions have left an indelible mark on the global mathematical community.

Publications Top Noted

Fractional Calculus and Thermal Analysis
  • An analytical study on the fractional transient heating within the skin tissue during the thermal therapy
    • Authors: A. Ghanmi, I.A. Abbas
    • Year: 2019
    • Citations: 114
    • Source: Journal of Thermal Biology 82, 229-233
Fractional and p-Laplacian Problems
  • A multiplicity results for a singular problem involving the fractional p-Laplacian operator

    • Authors: A. Ghanmi, K. Saoudi
    • Year: 2016
    • Citations: 68
    • Source: Complex Variables and Elliptic Equations 61 (9), 1199-1216
  • A multiplicity results for a singular equation involving the p(x)-Laplace operator

    • Authors: K. Saoudi, A. Ghanmi
    • Year: 2017
    • Citations: 65
    • Source: Complex Variables and Elliptic Equations 62 (5), 695-725
  • The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator

    • Authors: A.G.K. Saoudi
    • Year: 2016
    • Citations: 63
    • Source: Fractional Differential Calculus 6 (2), 201-217
Boundary Value Problems and Riemannโ€“Liouville Derivative
  • The Nehari manifold for a boundary value problem involving Riemannโ€“Liouville fractional derivative
    • Authors: K. Saoudi, P. Agarwal, P. Kumam, A. Ghanmi, P. Thounthong
    • Year: 2018
    • Citations: 47
    • Source: Advances in Difference Equations 2018, 1-18
Nonlinear Schrรถdinger Equations
  • Large and bounded solutions for a class of nonlinear Schrรถdinger stationary systems
    • Authors: V.R.N.Z. Abdeljabbar Ghanmi, Habib Maagli
    • Year: 2009
    • Citations: 41
    • Source: Analysis and Application 7 (4), 391-404
Kirchhoff-type and Singular Equations
  • Minimax method involving singular p(x)-Kirchhoff equation

    • Authors: K. Ben Ali, A. Ghanmi, K. Kefi
    • Year: 2017
    • Citations: 39
    • Source: Journal of Mathematical Physics 58 (11)
  • Nontrivial solutions for Kirchhoff-type problems involving the -Laplace operator

    • Authors: A. Ghanmi
    • Year: 2018
    • Citations: 21
    • Source:
Singular and Indefinite Weight Problems
  • Existence of solution for a singular fractional Laplacian problem with variable exponents and indefinite weights

    • Authors: R. Chammem, A. Ghanmi, A. Sahbani
    • Year: 2021
    • Citations: 28
    • Source: Complex Variables and Elliptic Equations 66 (8), 1320-1332
  • On the Steklov problem involving the p(x)-Laplacian with indefinite weight

    • Authors: K.B. Ali, A. Ghanmi, K. Kefi
    • Year: 2017
    • Citations: 24
    • Source: Opuscula Mathematica 37 (6), 779-794
Existence and Multiplicity of Solutions in Fractional Differential Equations
  • Existence of solutions for fractional differential equations with Dirichlet boundary conditions

    • Authors: K.B. Ali, A. Ghanmi, K. Kefi
    • Year: 2016
    • Citations: 25
    • Source: Electronic Journal of Differential Equations 116, 1-11
  • Existence of positive solutions for a coupled system of nonlinear fractional differential equations

    • Authors: A. Ghanmi, S. Horrigue
    • Year: 2019
    • Citations: 23
    • Source: Ukrainian Mathematical Journal 71, 39-49
  • Existence of positive bounded solutions for some nonlinear elliptic systems

    • Authors: N.Z. A. Ghanmi, H. Mรขagli, S. Turki
    • Year: 2009
    • Citations: 23
    • Source: Journal of Mathematical Analysis and Applications 352, 440-448
Nehari Manifold and Fractional Boundary Value Problems
  • Nehari manifold and multiplicity results for a class of fractional boundary value problems with p-Laplacian

    • Authors: A. Ghanmi, Z. Zhang
    • Year: 2019
    • Citations: 22
    • Source: Bulletin of the Korean Mathematical Society 56 (5), 1297-1314
  • Multiplicity of Nontrivial Solutions of a Class of Fractional p-Laplacian Problem

    • Authors: A. Ghanmi
    • Year: 2015
    • Citations: 20
    • Source: Zeitschrift fรผr Analysis und ihre Anwendungen (Journal of Analysis and its Applications)
  • A multiplicity results for a singular problem involving a Riemann-Liouville fractional derivative

    • Authors: A. Ghanmi, M. Kratou, K. Saoudi
    • Year: 2018
    • Citations: 19
    • Source: Filomat 32 (2), 653-669
Styklov Problems and Fractional Analysis
  • Existence and multiplicity of solutions for some Styklov problem involving p(x)-Laplacian operator

    • Authors: R. Chammem, A. Ghanmi, A. Sahbani
    • Year: 2022
    • Citations: 17
    • Source: Applicable Analysis 101 (7), 2401-2417
  • Existence result and uniqueness for some fractional problem

    • Authors: G. Wang, A. Ghanmi, S. Horrigue, S. Madian
    • Year: 2019
    • Citations: 16
    • Source: Mathematics 7 (6), 516
  • Existence Results for Nonlinear Boundary Value Problems

    • Authors: A. Ghanmi, S. Horrigue
    • Year: 2018
    • Citations: 15
    • Source: Filomat 32 (2), 609-618

 

liang cao | Interdisciplinary Mathematics | Best Researcher Award

Dr. liang cao | Interdisciplinary Mathematics | Best Researcher Award

lecturer at Hunan Institute of Engineering, Chinaย 

Dr. Liang Cao, a faculty member at the Hunan Institute of Engineering, specializes in reliability analysis, wind energy technology, and advanced manufacturing. With a strong academic foundation from Xiangtan University, he has led funded research projects, including one supported by the Natural Science Foundation of Hunan Province. His contributions to structural reliability analysis include developing machine learning-based surrogate models for evaluating low failure probabilities, advancing computational efficiency in engineering. He has published in high-impact journals such as Smart Materials and Structures and Probabilistic Engineering Mechanics and holds multiple patents in mechanical engineering. A member of the Society of Mechanical Engineering, Dr. Cao’s research significantly impacts reliability-based design optimization, particularly in wind turbine gearboxes and robotic mechanisms. While his academic influence is growing, enhancing citation impact, industry collaborations, and editorial leadership could further strengthen his profile. His work continues to shape advancements in probabilistic mechanics and reliability engineering.

Professional Profileย 

Scopus Profile
ORCID Profile

Educationย 

Dr. Liang Cao obtained his academic training from Xiangtan University, where he specialized in mechanical engineering. His education provided a strong foundation in reliability analysis, wind energy technology, and advanced manufacturing. During his academic journey, he gained expertise in probabilistic mechanics, structural safety, and optimization techniques, which later became the focus of his research. His studies emphasized the integration of computational modeling and experimental methods, equipping him with the skills necessary for advancing engineering reliability. Through coursework and research projects, he developed a deep understanding of mechanical system optimization, particularly in developing surrogate models for evaluating failure probabilities. His education laid the groundwork for his career in academia, where he continues to apply theoretical and computational approaches to improve structural and mechanical reliability. With a commitment to academic excellence, Dr. Cao remains engaged in continuous learning and professional development to further enhance his contributions to the field.

Professional Experienceย 

Dr. Liang Cao serves as a faculty member at the Hunan Institute of Engineering, where he contributes to teaching and research in mechanical engineering. His expertise in reliability analysis and design optimization has enabled him to guide students and researchers in developing innovative solutions for mechanical system reliability. Over the years, he has successfully led projects funded by the Natural Science Foundation of Hunan Province, further solidifying his reputation as an expert in the field. His work integrates computational modeling, machine learning, and structural safety to improve the performance of mechanical systems, particularly in wind turbine gearboxes and robotic mechanisms. Beyond research, he is actively involved in mentoring students and collaborating with peers to advance mechanical engineering methodologies. While he has made significant strides in academia, expanding his industry collaborations and assuming editorial or leadership roles would further strengthen his professional influence and contributions to the field.

Research Interest

Dr. Liang Caoโ€™s research focuses on reliability analysis, probabilistic mechanics, and structural optimization in mechanical engineering. His work integrates machine learning techniques with reliability-based design optimization to improve the efficiency and accuracy of failure predictions. A key aspect of his research is the development of surrogate models, such as Radial Basis Function Neural Networks (RBFNN), for evaluating low failure probabilities with enhanced computational efficiency. His studies have direct applications in wind turbine gearboxes, robotic mechanisms, and piezoelectric dispensing systems, contributing to safer and more robust mechanical designs. Additionally, he explores multi-source uncertainty modeling to enhance structural reliability under variable conditions. His research is published in high-impact journals such as Smart Materials and Structures and Probabilistic Engineering Mechanics. Moving forward, expanding interdisciplinary collaborations and securing larger research grants could amplify the impact of his work on global mechanical engineering challenges.

Awards and Honorsย 

Dr. Liang Cao has received recognition for his contributions to mechanical engineering, particularly in reliability analysis and probabilistic mechanics. His research achievements have been supported by the Natural Science Foundation of Hunan Province, which funded his work on sliding bearing lubrication reliability in fan gearboxes. Additionally, his multiple patents reflect his innovative contributions to structural safety and optimization in mechanical systems. While he has gained credibility through journal publications in esteemed outlets such as Probabilistic Engineering Mechanics and Smart Materials and Structures, broader recognition through industry awards and professional society honors could further elevate his profile. Active participation in international research collaborations and engineering awards may increase his chances of securing prestigious research awards. By continuing to contribute to mechanical engineering advancements, Dr. Cao has the potential to earn more accolades, further solidifying his standing as a leading researcher in reliability engineering and mechanical system optimization.

Conclusionย 

Dr. Liang Cao is an accomplished researcher in mechanical engineering, specializing in reliability analysis, probabilistic mechanics, and structural optimization. With a strong educational foundation from Xiangtan University and professional experience at the Hunan Institute of Engineering, he has made significant contributions to enhancing mechanical system safety and efficiency. His research, funded by the Natural Science Foundation of Hunan Province, has led to innovative developments in surrogate modeling and uncertainty analysis. He has published extensively in high-impact journals and holds multiple patents, reflecting his commitment to advancing engineering methodologies. While his academic impact is commendable, expanding his industry collaborations, citation influence, and leadership roles in research communities could further enhance his professional standing. With a growing reputation in reliability engineering, Dr. Cao is poised to make even greater contributions to mechanical system design and optimization, positioning himself as a leading figure in applied engineering research.

Publications Top Noted

  • Title: Optimizing Dispensing Performance of Needle-Type Piezoelectric Jet Dispensers: A Novel Drive Waveform Approach
    Authors: Liang Cao, S.G. Gong, Y.R. Tao, S.Y. Duan
    Year: 2024
    Source: Smart Materials and Structures

  • Title: Theoretical Study and Physical Tests on the Influence of Process Parameters of Needle on Dispensing Quality
    Authors: Liang Cao, S.G. Gong, S.Y. Duan, Y.R. Tao
    Year: 2023
    Source: Optik

  • Title: A RBFNN Based Active Learning Surrogate Model for Evaluating Low Failure Probability in Reliability Analysis
    Authors: Liang Cao, S.G. Gong, Y.R. Tao, S.Y. Duan
    Year: 2023
    Source: Probabilistic Engineering Mechanics

  • Title: Optimisation Design for Wind Turbine Mainshaft Bearing Based on Lubrication Reliability
    Authors: Liang Cao
    Year: 2020
    Source: International Journal of Reliability and Safety

  • Title: A Novel Evidence-Based Fuzzy Reliability Analysis Method for Structures
    Authors: Liang Cao
    Year: 2017
    Source: Structural and Multidisciplinary Optimization

  • Title: Safety Analysis of Structures with Probability and Evidence Theory
    Authors: Liang Cao
    Year: 2016
    Source: International Journal of Steel Structures

 

Samir Brahim Belhaouari | Applied Mathematics | Best Researcher Award

Assoc. Prof. Dr. Samir Brahim Belhaouari | Applied Mathematics | Best Researcher Award

Associate Prof at College of Science and Engineering /Hamad Bin Khalifa University, Qatar

Dr. Samir Brahim Belhaouari is an accomplished Associate Professor at Hamad Bin Khalifa University, specializing in applied mathematics, optimization, pattern recognition, and machine learning. He holds a Ph.D. in Mathematical Sciences from the prestigious Federal Polytechnic School of Lausanne and a Masterโ€™s degree in Networks and Telecommunications from INP/ENSEEIHT in France. Dr. Belhaouari has over 300 published research papers and has made significant contributions to areas such as sustainable AI, bio-inspired neural networks, time-frequency transformations for prediction, and cryptography. His work has earned him numerous accolades, including Gold and Silver Medals at international exhibitions. He has been actively involved in global academic initiatives, with research collaborations in Europe, the USA, and the Middle East, and has led impactful research projects, such as AI solutions for medical imaging. With over 3,800 citations and an H-index of 32, Dr. Belhaouariโ€™s innovative work continues to shape the future of applied mathematics and AI.

Professional Profileย 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Samir Brahim Belhaouari completed his Ph.D. in Mathematical Sciences, focusing on stochastic processes and their applications, at the prestigious Federal Polytechnic School of Lausanne (EPFL) in Switzerland in 2006. Prior to that, he earned a Master’s degree in Networks and Telecommunications, specializing in signal and image processing, from INP/ENSEEIHT in France in 2000. This strong educational foundation has been key to his outstanding career in applied mathematics, optimization, and machine learning. His educational journey reflects a commitment to excellence and a deep understanding of complex mathematical and computational theories, which he continues to apply in his innovative research projects.

Professional Experience

Dr. Belhaouari is an Associate Professor in the Division of Information and Computing Technology at Hamad Bin Khalifa University, Qatar. His career includes previous academic positions at the University of Sharjah, Radiological Technologies University-VT, and INNOPOLIS University in Russia. He has also worked with top institutions such as EPFL and INP. His professional experience spans various continents, providing a global perspective on educational and research practices. Additionally, his extensive involvement in research projects and university leadership showcases his dedication to advancing both academic and practical knowledge.

Research Interest

Dr. Samir Brahim Belhaouariโ€™s research interests encompass a wide array of topics, primarily focusing on applied mathematics, AI, machine learning, and optimization. His work delves into stochastic processes, bio-inspired neural networks, time-frequency transformations for time-series prediction, cryptographic algorithms, and sustainable AI. Notable projects include the development of green AI technologies, new neural network architectures, and advanced algorithms for feature extraction and video summarization. His research aims to bridge theoretical mathematics with real-world applications, particularly in fields like medical imaging, bioinformatics, and cryptography, thus contributing to the advancement of science and technology.

Award and Honor

Dr. Belhaouariโ€™s groundbreaking research has been recognized globally with multiple awards, including Gold and Silver Medals at international exhibitions. His contributions to the field of applied mathematics and AI have earned him high regard in academia. With an impressive citation index exceeding 3,800 and an H-index of 32, his work is highly influential in both theoretical and applied contexts. Furthermore, his leadership in various international academic initiatives and his role in establishing INNOPOLIS University highlight his commitment to advancing education and research worldwide.

Conclusion

Dr. Samir Brahim Belhaouari is a distinguished academic and researcher whose work has made a significant impact on applied mathematics, AI, and machine learning. His expertise spans a wide range of subjects, from stochastic processes and optimization to cryptography and bioinformatics. His extensive professional experience and global research collaborations have cemented his reputation as a thought leader in his field. Through his dedication to both teaching and groundbreaking research, Dr. Belhaouari continues to contribute to the advancement of knowledge and the development of innovative solutions to real-world challenges. His recognition with numerous awards and honors serves as a testament to his excellence and lasting influence.

Publications Top Noted

  • Title: t-SNE-PSO: Optimizing t-SNE using particle swarm optimization
    Authors: M. Allaoui, S. Birahim Belhaouari, R. Hedjam, K. Bouanane, M.L. Kherfi
    Year: 2025
    Source: Expert Systems with Applications

  • Title: KNNOR-Reg: A python package for oversampling in imbalanced regression
    Authors: S. Birahim Belhaouari, A. Islam, K. Kassoul, A.I. Al-Fuqaha, A. Bouzerdoum
    Year: 2025
    Source: Software Impacts

  • Title: Intelligent mask image reconstruction for cardiac image segmentation through localโ€“global fusion
    Authors: A. Boukhamla, A. Nabiha, S. Birahim Belhaouari
    Year: 2025
    Source: Applied Intelligence

  • Title: G-EEGCS: Graph-based optimum electroencephalogram channel selection
    Authors: I. Faye, M.Z. Yusoff, S. Birahim Belhaouari
    Year: 2024
    Source: Biomedical Signal Processing and Control

  • Title: Reinforced steering Evolutionary Markov Chain for high-dimensional feature selection
    Authors: A.U. Rehman, S. Birahim Belhaouari, A. Bermak
    Year: 2024
    Citations: 2
    Source: Swarm and Evolutionary Computation

  • Title: Defense against adversarial attacks: robust and efficient compressed optimized neural networks
    Authors: I. Kraidia, A. Ghenai, S. Birahim Belhaouari
    Year: 2024
    Citations: 3
    Source: Scientific Reports

  • Title: Exploring new horizons in neuroscience disease detection through innovative visual signal analysis
    Authors: N.S. Amer, S. Birahim Belhaouari
    Year: 2024
    Citations: 6
    Source: Scientific Reports

  • Title: A novel few shot learning derived architecture for long-term HbA1c prediction
    Authors: M.K. Qaraqe, A. Elzein, S. Birahim Belhaouari, M.S. Ilam, G. Petrovski
    Year: 2024
    Citations: 2
    Source: Scientific Reports

  • Title: Elevating recommender systems: Cutting-edge transfer learning and embedding solutions
    Authors: A. Fareed, S. Hassan, S. Birahim Belhaouari, Z. Halim
    Year: 2024
    Citations: 1
    Source: Applied Soft Computing Journal

  • Title: FairColor: An efficient algorithm for the Balanced and Fair Reviewer Assignment Problem
    Authors: K. Bouanane, A.N. Medakene, A. Benbelghit, S. Birahim Belhaouari
    Year: 2024
    Citations: 1
    Source: Information Processing and Management

 

Paula Beatriz Morales Baรฑuelos | Applied Mathematics | Best Paper Award

Dr. Paula Beatriz Morales Baรฑuelos | Applied Mathematics | Best Paper Award

Academic and researcher at Universidad Iberoamericana, Mexico city, Mexico

Dr. Paula Beatriz Morales Baรฑuelos is a distinguished Mexican academic specializing in finance and engineering. She holds a Master’s in Engineering from Universidad Iberoamericana, Mexico City, and a Doctorate in Business Administration and Management from Universidad Politรฉcnica de Valencia, Spain, where she graduated with Cum Laude honors. Her doctoral research focused on credit spread determination using structural and mixed models in emerging economies, particularly Mexico. Dr. Morales Baรฑuelos has also earned multiple master’s degrees from the Instituto Tecnolรณgico Autรณnomo de Mรฉxico (ITAM), each with honors, covering Economic Theory, Administration, and Finance. Professionally, she serves as a Full-Time Professor in the Department of Business Studies at Universidad Iberoamericana, where she has held various leadership roles, including coordinating bachelor’s programs and technical university programs. Her research contributions are notable, with publications in international peer-reviewed journals addressing topics such as option pricing models and credit risk assessment. Dr. Morales Baรฑuelos’s extensive academic background and research endeavors have significantly advanced financial modeling and analysis.

Professional Profileย 

Google Scholar

Education

Paula Beatriz Morales Baรฑuelos has an extensive academic background in finance and engineering. She earned a Bachelorโ€™s degree in Public Accounting from the Instituto Tecnolรณgico Autรณnomo de Mรฉxico (ITAM), followed by three Master’s degrees from the same institution: in Finance, Administration, and Economic Theory. She further pursued a Master of Science in Engineering at the Universidad Iberoamericana in Mexico City, where she focused her thesis on “Pricing Options with the Modified BSM Model.” Recently, she completed her Doctorate in Business Administration and Management at the Universidad Politรฉcnica de Valencia, Spain, graduating with Cum Laude honors. Her doctoral research centered on “Setting the Credit Spread Using Structural and Mixed Models,” with an empirical application in the Mexican context. This diverse educational journey underscores her deep expertise in financial modeling and her commitment to advancing knowledge in her field.

Professional Experience

Paula Beatriz Morales Baรฑuelos is a distinguished academic and professional in finance and accounting. She has held significant roles at the Universidad Iberoamericana in Mexico City, including Coordinator of Bachelor’s Degrees in Accounting and Business Management/Accounting and Business Direction from November 2021 to February 2023, and Full-Time Professor in the Department of Business Studies since November 2016. In these positions, she has been instrumental in curriculum development, notably redesigning the finance program implemented in August 2021. Prior to her tenure at Universidad Iberoamericana, Morales Baรฑuelos served at the Instituto Tecnolรณgico Autรณnomo de Mรฉxico (ITAM) as a Full-Time Professor in the Department of Accounting from August 1996 to May 2016. She also held leadership roles at ITAM, including Director of the Public Accounting and Financial Strategy Program and Head of the Department of Accounting. Her professional journey began at KPMG, where she worked as a Junior Advisor in the Tax Advisory Area from January 1994 to July 1996. Throughout her career, Morales Baรฑuelos has demonstrated a commitment to advancing financial education and practice in Mexico.

Research Interest

Paula Beatriz Morales Baรฑuelos’s research interests are deeply rooted in financial mathematics, with a particular focus on option pricing models and credit risk assessment. Her work on modifying the Black-Scholes-Merton model aims to enhance its applicability in markets where traditional assumptions may not hold, reflecting her commitment to advancing option pricing theory. Additionally, she has explored the determination of credit spreads using structural and mixed models, applying her findings to emerging economies like Mexico. Beyond these areas, Morales Baรฑuelos has investigated the inclusion of socially irresponsible companies in sustainable stock indices, contributing to the discourse on corporate social responsibility and ethical investing. Her diverse research portfolio underscores a dedication to both theoretical advancements and practical applications in finance, particularly within the context of emerging markets.

Award and Honor

Paula Beatriz Morales Baรฑuelos has been recognized for her significant contributions to finance and business administration. In November 2017, she received an Honorable Mention in the National IMEF Award for her work titled “Analysis of Financial Valuation Models for Determining the Fair Value of Companies in Emerging Markets.” Earlier, in November 2005, she secured Second Place in the same award for her study on the “Incorporation of Uncertainty in Financial Statements.” Additionally, since January 2021, Paula has been a Candidate for Researcher, a distinction granted by the National System of Researchers (SNI) of CONAHCYT, acknowledging her ongoing commitment to research excellence.

Conclusion

Paula Beatriz Morales Baรฑuelos’s research critically examines the efficacy of traditional financial models in emerging markets, with a particular focus on option pricing and credit spread determination. In her study titled “A Modified Black-Scholes-Merton Model for Option Pricing,” she introduces a model inspired by conformable calculus, aiming to provide greater flexibility for markets where the standard Black-Scholes-Merton model may not be as effective. Additionally, her work on “Default Probabilities and the Credit Spread of Mexican Companies: The Modified Merton Model” evaluates various models to identify the one that best approximates the credit spreads for Mexican non-financial companies. Her findings suggest that the modified Merton model offers a closer approximation to the credit spreads applied to loans in the Mexican context. Through these contributions, Morales Baรฑuelos enhances the understanding of financial modeling in emerging economies, addressing the limitations of traditional models and proposing modifications to improve their applicability.

Publications Top Noted

  • Title: “The Inclusion of Socially Irresponsible Companies in Sustainable Stock Indices”

    • Authors: Ivรกn Arribas, Marรญa Dolores Espinรณs-Vaรฑรณ, Fernando Garcรญa, Paula Beatriz Morales-Baรฑuelos
    • Year: 2019
    • Citations: 55
  • Title: “A Modified Black-Scholes-Merton Model for Option Pricing”

    • Authors: Paula Morales-Baรฑuelos, N. Muriel, G. Fernรกndez-Anaya
    • Year: 2022
    • Citations: 22
  • Title: “Fijaciรณn del precio de una opciรณn financiera mediante el modelo del Black Scholes Merton modificado”

    • Authors: Paula Beatriz Morales Baรฑuelos
    • Year: 2024
    • Source: Universidad Iberoamericana Ciudad de Mรฉxico, Departamento de Estudios en …
  • Title: “Default Probabilities and the Credit Spread of Mexican Companies: The Modified Merton Model”

    • Authors: Paula Morales-Baรฑuelos, Guillermo Fernรกndez-Anaya
    • Year: 2023
    • Source: Mathematics, Volume 11, Issue 20, Article 4397
  • Title: “Default Probabilities and the Credit Spread, Modified Merton model, Mexican Case”

    • Authors: Paula Morales-Baรฑuelos, Guillermo Fernรกndez-Anaya
    • Year: 2023
    • Source: Preprints
  • Title: “Selecting the model with the best fair value estimate in an emerging market”

    • Authors: Paula Morales Baรฑuelos
    • Year: 2020
    • Source: Revista Mexicana de Economรญa y Finanzas, Volume 15, Issue 1, Pages 81-103
  • Title: “Anรกlisis de la evasiรณn fiscal proveniente del mercado informal mediante opciones reales y teorรญa de juegos”

    • Authors: Jorge Smeke Zwaiman, Paula Beatriz Morales Baรฑuelos, Luis Huerta Garcรญa
    • Year: 2018
    • Source: [Specific publication details not provided]
  • Title: “Fijaciรณn del diferencial de crรฉdito mediante modelos Estructurales y Mixtos. Aplicaciรณn empรญrica en una economรญa emergente: el caso mexicano”

    • Authors: Paula Beatriz Morales Baรฑuelos
    • Year: [Year not specified]
    • Source: Universitat Politรจcnica de Valรจncia
  • Title: “Costos Gerenciales”

    • Authors: Luis Huerta Garcรญa, Jorge Smeke Zwaiman, Paula Morales Baรฑuelos
    • Year: 2018
    • Citations: 8
  • Title: “Eficiencia Recaudatoria: Definiciรณn, Estimaciรณn e Incidencia en la Evasiรณn”

    • Authors: R. Samaniego Breach, Paula Morales Baรฑuelos, H. Bettinger
    • Year: 2009
    • Citations: 7
  • Title: “Selecciรณn del Modelo de Mejor Estimaciรณn del Valor Razonable en un Mercado Emergente”

    • Author: Paula Morales Baรฑuelos
    • Year: 2020
    • Citations: 4

 

 

Muhammad Nasim Aftab | Applied Mathematics | Best Researcher Award

Prof. Muhammad Nasim Aftab | Applied Mathematics | Best Researcher Award

Lecturer at Punjab group of colleges, Okara campus Pakistan

Muhammad Nasim Aftab is a dedicated mathematician and researcher specializing in Quantum Calculus, Integral Inequalities, and Algebra. He holds an MS in Mathematics from COMSATS University, Lahore, with a GPA of 3.62/4.00, and an M.Sc. in Mathematics from University of Education, Lahore. His research contributions include multiple publications in reputed journals, such as AIMS Mathematics, Mathematics, and the Journal of Inequalities and Applications, with several additional manuscripts under review. He has been a lecturer at Punjab Group of Colleges, Okara Campus, since 2014, teaching a wide range of mathematical subjects. His expertise extends to LaTeX, MATLAB, and Python, enhancing his computational research skills. Passionate about academia, he actively engages in problem-solving and mathematical innovations. While his work is commendable, furthering international collaborations, high-impact journal publications, and award participation could elevate his research impact. His dedication to mathematics and education makes him a strong contender for research excellence awards.

Professional Profileย 

Google Scholar

Education

Muhammad Nasim Aftab holds a strong academic background in Mathematics, with both MS and MSc degrees in the field. He earned his Master of Science (MSc) in Mathematics from the University of Education, Lahore (Okara Campus) in 2016, securing a 3.40/4.00 GPA. His coursework covered advanced topics, including Real Analysis, Complex Analysis, Functional Analysis, Numerical Analysis, Differential Geometry, and Graph Theory. Pursuing further specialization, he completed his MS in Mathematics from COMSATS University, Islamabad (Lahore Campus) in 2021, achieving a 3.62/4.00 GPA. His MS thesis, titled “Cohen-Macaulayness in Codimension for Line Simplicial Complexes,” focused on algebraic and combinatorial aspects of simplicial complexes. Throughout his education, he excelled in subjects like Graph Theory, Fuzzy Logic, Fixed Point Theory, Mathematical Analysis, and Topology. His academic journey reflects a deep commitment to mathematical research, analytical thinking, and problem-solving, making him a strong researcher in the field.

Professional Experience

Muhammad Nasim Aftab has been serving as a Lecturer in Mathematics at Punjab Group of Colleges, Okara Campus, since 2014, where he has taught a diverse range of mathematical subjects, including Calculus, Abstract Algebra, Linear Algebra, Graph Theory, Number Theory, Differential Equations, and Mathematical Analysis. His extensive teaching experience spans both undergraduate and intermediate levels, reflecting his strong command over mathematical concepts and pedagogy. In addition to his teaching responsibilities, he has been actively engaged in research, publishing papers in reputed journals on topics such as Quantum Calculus, Integral Inequalities, and Algebra. His ability to integrate advanced mathematical theories with real-world applications showcases his expertise and dedication to the field. Furthermore, his proficiency in LaTeX, MATLAB, and Python enhances his ability to conduct numerical simulations and research-driven computations. His commitment to academia, research, and innovation makes him a valuable contributor to the field of mathematics.

Research Interest

Muhammad Nasim Aftab’s research interests lie in the fields of Quantum Calculus, Integral Inequalities, Algebra, and Graph Theory, with a strong focus on Symmetric Quantum Calculus and its Applications. His work explores Cohen-Macaulayness in Codimension for Line Simplicial Complexes, advancing algebraic topology and combinatorial mathematics. He is particularly interested in developing new mathematical inequalities in quantum and post-quantum settings, contributing to the theoretical foundations of applied mathematics. His recent research on symmetric Hahn calculus, Z-transforms in quantum calculus, and post-quantum integral inequalities highlights his dedication to expanding mathematical frameworks. Additionally, he is keen on exploring the interplay between advanced algebraic structures and real-world applications, particularly in optimization, numerical analysis, and cryptographic systems. With a strong background in functional analysis, topology, and differential geometry, he aims to contribute innovative solutions to complex mathematical problems while fostering interdisciplinary research collaborations.

Award and Honor

Muhammad Nasim Aftab has demonstrated exceptional dedication to the field of Mathematics, earning recognition for his contributions to Quantum Calculus, Integral Inequalities, and Algebra. As a lecturer at Punjab Group of Colleges, he has played a pivotal role in shaping young mathematical minds. His academic excellence, reflected in his MS in Mathematics with a 3.62/4.00 GPA from COMSATS University, has laid a strong foundation for his research career. His contributions to high-impact journals such as AIMS Mathematics, Mathematics, and the Journal of Inequalities and Applications highlight his research prowess, while multiple manuscripts under review further demonstrate his active engagement in advancing mathematical knowledge. Under the mentorship of Dr. Saad Ihsan Butt, he has published groundbreaking work on symmetric quantum inequalities. His proficiency in LaTeX, MATLAB, and Python adds a computational edge to his expertise. With a strong research portfolio and commitment to academia, he is a deserving candidate for prestigious awards and honors.

Conclusion

Muhammad Nasim Aftab is a dedicated researcher in mathematics with a strong academic background, evidenced by his MS in Mathematics from COMSATS University and a commendable research portfolio in Quantum Calculus, Integral Inequalities, and Graph Theory. His publications in reputable journals, along with multiple submitted manuscripts, highlight his commitment to advancing mathematical sciences. As a lecturer at Punjab Group of Colleges since 2014, he has significantly contributed to mathematics education, shaping the next generation of scholars. His proficiency in LaTeX, MATLAB, and Python enhances his computational research capabilities. While his research contributions are impressive, expanding collaborations, targeting high-impact journals, and increasing participation in international awards could further solidify his reputation. Pursuing a Ph.D. would also elevate his expertise and professional standing. Overall, his dedication to mathematical research and education makes him a strong candidate for recognition, and he holds great potential for further contributions to the field.

Publications Top Noted

  • Title: Some Hermite-Hadamard and Midpoint Type Inequalities in Symmetric Quantum Calculus
    • Authors: S.I. Butt, M.N. Aftab, H.A. Nabwey, S. Etemad
    • Year: 2024
    • Citations: 5
  • Title: Symmetric Quantum Inequalities on Finite Rectangular Plane
    • Authors: S.I. Butt, M.N. Aftab, Y. Seol
    • Year: 2024
    • Citations: 3
  • Title: Novel Notions of Symmetric Hahn Calculus and Related Inequalities
    • Authors: S.I. Butt, M.N. Aftab, A. Fahad, Y. Wang, B.B. Mohsin
    • Year: 2024
  • Title: Cohen-Macaulayness in Codimension for Line Simplicial Complexes
    • Authors: M.N. Aftab
    • Year: 2021