Abbas Khlaif | Applied Mathematics | Best Researcher Award

Dr. Abbas Khlaif | Applied Mathematics | Best Researcher Award

Lecture at Department of Mathematics and Computer Applications, College of Sciences, Al-Nahrain University, Jadriya, Baghdad, Iraq

Dr. Abbas Ibrahim Khlaif is an accomplished mathematician from Iraq, specializing in Numerical Analysis, Partial Fractional Differential Equations, Fuzzy Sets, and Delay Differential Equations. He holds a Ph.D. in Mathematics from Sousse University, Tunisia (2025), and has an extensive teaching career at institutions like Al-Nahrain University and the College of Peace University. His research, particularly in solving fuzzy variable-order fractional partial differential equations, has been published in prestigious journals, advancing both theoretical and applied mathematics. 🧮📚 Dr. Khlaif has earned several certificates of appreciation for his academic contributions and leadership, reflecting his commitment to excellence. His expertise in complex mathematical concepts has earned him recognition in seminars and conferences worldwide. 🌍💡 As an educator, he inspires students in advanced mathematics courses and has shown leadership in managing academic departments. With his innovative approach and dedication, Dr. Khlaif is poised to make a lasting impact on the mathematical community. 🎓

Professional Profile

Google Scholar
ORCID Profile

🎓 Education: A Journey of Mathematical Mastery

Dr. Abbas Ibrahim Khlaif‘s academic path is nothing short of inspiring. Starting with a Master’s in Mathematics and Computer Applications from Al-Nahrain University, he set the foundation for his groundbreaking work in Fractional Calculus and Fuzzy Set Theory. His curiosity and dedication led him to pursue a Ph.D. in Mathematics at Sousse University, Tunisia, where he explored the complexities of Fractional Differential Equations. Throughout his studies, Dr. Khlaif never shied away from taking on challenging concepts—he embraced them! This pursuit of knowledge is not just a career but a lifelong passion that fuels his research and innovation. His solid foundation in theory and application sets him apart as a leader in his field. 🎓📚

🏫 Professional Experience: Inspiring Minds, Leading Change

Dr. Khlaif’s career is a remarkable blend of teaching brilliance and leadership prowess. As a Lecturer at Al-Nahrain University, he nurtures future mathematicians, guiding them through the intricate beauty of Differential Equations and Complex Analysis. What sets Dr. Khlaif apart is his ability to make complex subjects accessible, often using real-world examples to show students the power of mathematics. His leadership experience as the Head of the Department of Air Conditioning and Refrigeration Engineering at College of Peace University speaks volumes about his versatility. He combines academic excellence with strong management skills, helping shape academic programs that foster innovation. 🌟💡

🔬 Research Interests: Solving the World’s Complex Problems

Dr. Abbas Khlaif’s research interests push the boundaries of what is possible in applied mathematics. His focus on Fractional Differential Equations and Fuzzy Sets is not just academic—it’s transformative. Using advanced methods like the Homotopy Analysis Method, Dr. Khlaif explores new approaches to solve delay differential equations and variable-order fractional partial differential equations. This work is crucial for solving complex problems in fields such as engineering, biomedicine, and technology. His innovative techniques are revolutionizing how we approach dynamic systems with uncertainty and complexity, showing that mathematics is not only theoretical but also immensely practical. 🔬🌍

🏆 Awards and Honors: A Testimony to Excellence

Dr. Khlaif’s impact on the academic world hasn’t gone unnoticed. His contributions have been recognized with multiple certificates of appreciation from the Minister of Higher Education, the President of Al-Nahrain University, and the Dean of the Faculty of Science. These awards are not just pieces of paper—they represent his commitment to excellence in both teaching and research. They reflect the hard work he’s invested in advancing the field of mathematics. These recognitions aren’t just milestones in his career—they’re a badge of honor, proving that Dr. Khlaif is truly a force to be reckoned with in the world of applied mathematics. 🏆🎖

🌍 Conclusion: A Visionary on the Rise

The future of mathematics is brighter thanks to researchers like Dr. Abbas Ibrahim Khlaif. His innovative work in Fractional Calculus and Fuzzy Sets is not just theory—it’s about solving real-world problems and transforming industries. As a lecturer and leader, Dr. Khlaif continues to inspire and guide the next generation of thinkers. His awards and recognition are just the beginning of what promises to be an extraordinary journey ahead. His contributions to mathematics have already left a lasting mark, and there is no doubt that he will continue to shape the future of the field with bold ideas and innovative research. 🌍🔭

Publications Top Notes

Title: Adomian Decomposition Method for Solving Delay Differential Equations of Fractional Order
Authors: OH Mohammed, AI Khlaif
Year: 2014
Cited By: 23 📚
Source: Structure 12 (13), 14-15 📰


Title: Homotopy Analysis Method for Solving Delay Differential Equations of Fractional Order
Authors: OH Mohammed, IK Abbas
Year: 2014
Cited By: 7 📚
Source: Mathematical Theory and Modeling 4 (14), 48-56 📰


Title: Conformable Variational Iteration Method for Solving Fuzzy Variable-Order Fractional Partial Differential Equations with Proportional Delay
Authors: AI Khlaif, OH Mohammed, M Feki
Year: 2025
Source: Partial Differential Equations in Applied Mathematics 13, 101064 📰


Title: A Modified Method for Solving Delay Fuzzy Variable-Order Fractional Partial Differential Equations
Authors: AI Khlaif, OH Mohammed, M Feki
Year: 2024
Source: Communications in Mathematical Biology and Neuroscience 2024, Article ID 114 📰


Title: Homotopy Analysis Method for Solving Fuzzy Variable–Order Fractional Partial Differential Equations with Proportional Delay
Authors: AI Khlaif, OH Mohammed, M Feki
Year: 2024
Source: Journal of Applied Science and Engineering 28 (7), 1601-1611 📰

Sohail Ahmad Khan | Applied Mathematics | Young Scientist Award

Dr. Sohail Ahmad Khan | Applied Mathematics | Young Scientist Award

Research Associate at Quaid I Azam University Islamabad, Pakistan

Dr. Sohail Ahmad Khan 🌍📘, a distinguished researcher from the Department of Mathematics at Quaid-i-Azam University, Islamabad, stands among the world’s Top 2% scientists as recognized by Stanford University 🌟📊. With a PhD in Applied Mathematics (2024) and over 127 ISI-indexed publications, his work in fluid mechanics and nanomaterial dynamics 💧🧪 has garnered global acclaim. Boasting an H-index of 30 and a cumulative impact factor exceeding 500 🔬📈, Dr. Khan is a prolific author and a dedicated reviewer for over 120 high-impact journals. His academic excellence has been honored with multiple international awards 🏅🌐, fellowships, and top-cited recognitions. As an organizer and contributor to major scientific forums, he consistently drives forward environmental and thermal engineering research 🌱🔥. Dr. Khan’s dedication, interdisciplinary expertise, and visionary leadership mark him as an outstanding contender for the Young Scientist Award 🏆🔍.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education 🎓📘

Dr. Sohail Ahmad Khan’s academic voyage began with a BSc in Mathematics & Physics from the University of Science and Technology, Bannu (2014), followed by an MSc (2017), MPhil (2019), and PhD in Applied Mathematics (2024) from Quaid-i-Azam University, Islamabad. His education reflects a deep-rooted passion for mathematical precision and applied problem-solving 🔍📐. Throughout his academic progression, Dr. Khan honed his expertise in fluid mechanics, nanomaterial dynamics, and nonlinear analysis, laying a solid foundation for a prolific research career. His consistent academic excellence earned him competitive fellowships at each level, reinforcing his stature as a devoted scholar. From foundational mechanics to advanced computational modeling, his scholastic path showcases an unwavering dedication to unraveling complex real-world phenomena through mathematical elegance 📊🔬.

Professional Experience 👨‍🏫💼

As a faculty member at Quaid-i-Azam University’s Department of Mathematics, Dr. Khan has played an instrumental role in shaping academic and research landscapes 🌐📚. His teaching portfolio spans undergraduate courses such as Calculus, Linear Algebra, Fluid Mechanics, and Mathematical Methods for Statistics, reflecting both depth and breadth in applied mathematics 🧠✏️. Beyond classroom instruction, he has actively participated in curriculum development, academic mentoring, and interdisciplinary collaboration. He’s also taken a leadership role in organizing several international conferences, promoting innovation and scholarly exchange across domains. His editorial service for 120+ high-impact journals underscores his reputation as a rigorous peer and thought leader. Dr. Khan’s professional engagements not only reflect his commitment to knowledge dissemination but also his pivotal role in nurturing the next generation of mathematicians and applied scientists 🌟📖.

Research Interests 🔬🧪

Dr. Sohail Ahmad Khan’s research pursuits orbit the intricate domains of fluid dynamics, nanomaterial science, thermal transport, and nonlinear partial differential equations 💧🌡️. His work primarily addresses real-world problems involving entropy generation, heat and mass transfer, magnetohydrodynamics, and radiative flow phenomena—topics critical to engineering, environmental science, and biophysics. His interdisciplinary flair merges applied mathematics with computational simulations, offering analytical solutions that bridge theory and practice 🧠💡. With over 70 publications in Q1 journals and a cumulative impact factor surpassing 500, his innovative approaches have set benchmarks in thermal engineering and sustainable fluid mechanics. Dr. Khan’s cutting-edge investigations not only advance mathematical frontiers but also contribute to addressing global challenges such as energy efficiency, climate impact, and biomedical transport systems 🌍💥.

Awards and Honors 🏅🌟

Dr. Khan’s excellence has been celebrated both nationally and internationally. Twice listed among the World’s Top 2% Scientists by Stanford University (2022, 2024) 🌍📊, he stands as a beacon of global impact. His accolades include the International Best Researcher Award, Young Scientist Award, and a prestigious Gold Medal for his PhD research in fluid mechanics 🥇🌀. He’s received the Chief Minister Education Endowment Scholarship, MPhil and PhD fellowships, and recognition for publishing top-cited articles in elite journals like ZAMM 📈📚. He has participated in globally significant conferences focused on climate change, water security, and energy ecosystems, often as a keynote speaker or organizer. These accolades underscore his scholarly brilliance, leadership, and sustained contribution to applied mathematical research. His honors not only validate his academic journey but inspire aspiring researchers to aim higher and pursue meaningful, high-impact inquiry 💫🔍.

Conclusion 🧾✅

Dr. Sohail Ahmad Khan exemplifies the spirit of innovation, academic rigor, and impactful research 🧠🏆. With a robust academic foundation, stellar research credentials, and numerous international accolades, he stands as an outstanding candidate for the Young Scientist Award. His influential work in applied mathematics, particularly fluid mechanics and nanomaterial modeling, addresses pressing scientific challenges and resonates across disciplines. Through mentoring, publication, and conference leadership, he continually uplifts the research ecosystem, both locally and globally 🌐📢. His remarkable scholarly output, collaborative ethos, and unwavering dedication to excellence position him not only as a formidable mathematician but also as a visionary leader in scientific advancement. In every dimension—education, research, service, and community engagement—Dr. Khan proves to be a paragon of academic excellence, richly deserving of recognition on the world stage 🏅🌍.

Publications Top Notes

🔬 TASA Formulation for Nonlinear Radiative Flow of Walter-B Nanoliquid Invoking Microorganism and Entropy Generation

Authors: T. Hayat, A. Razzaq, S.A. Khan, A. Razaq
Journal: Results in Engineering
Volume: 24, Article: 103346
Year: 2024
Citations: 6


☀️ Entropy Induced Flow Model for Solar Radiation Through Nanomaterials with Cubic Autocatalysis Reaction

Authors: A. Razaq, S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Magnetism and Magnetic Materials
Volume: 586, Article: 171172
Year: 2023
Citations: 6


🧫 Entropy Generation in Bioconvection Hydromagnetic Flow with Gyrotactic Motile Microorganisms

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Nanoscale Advances
Volume: 5(18), Pages: 4863–4872
Year: 2023
Citations: 6


♻️ Entropy Generation and Dufour and Soret Effects in Radiative Flow by a Rotating Cone

Authors: S.A. Khan, T. Hayat, A. Alsaedi, S. Momani
Journal: Physica Scripta
Volume: 96(2), Article: 025209
Year: 2020
Citations: 6


🌡️ Entropy Generated Nonlinear Mixed Convective Beyond Constant Characteristics Nanomaterial Wedge Flow

Authors: A. Razaq, T. Hayat, S.A. Khan
Journal: International Communications in Heat and Mass Transfer
Volume: 159, Article: 108000
Year: 2024
Citations: 5


🌊 Non-similar Solutions for Radiative Bioconvective Flow with Soret and Dufour Impacts

Authors: M.W. Ahmad, T. Hayat, A. Alsaedi, S.A. Khan
Journal: Case Studies in Thermal Engineering
Volume: 53, Article: 103873
Year: 2024
Citations: 5


🔥 Thermal Energy Transport in Nanomaterial Flow with Modified Heat and Mass Transfer Laws

Authors: T. Hayat, A. Razaq, S.A. Khan, M.A. Sial
Journal: Case Studies in Thermal Engineering
Volume: 41, Article: 102647
Year: 2023
Citations: 5


💡 Radiative Bioconvective Walter-B Nanoliquid Flow with Soret and Dufour Effects

Authors: S.A. Khan, A. Razaq, T. Hayat, A. Alsaedi
Journal: Case Studies in Thermal Engineering
Volume: 39, Article: 102497
Year: 2023
Citations: 5


⚙️ Non-Newtonian Bioconvection in Sutterby Nanoliquid with Thermal Fluctuations and Radiation

Authors: T. Hayat, A. Razaq, S.A. Khan
Journal: Case Studies in Thermal Engineering
Volume: 37, Article: 102271
Year: 2022
Citations: 5


🌐 Bioconvection of Micropolar Nanoliquid with Chemical Reaction and Radiation Effects

Authors: S.A. Khan, A. Razaq, T. Hayat, A. Alsaedi
Journal: Journal of Materials Research and Technology
Volume: 23, Pages: 2889–2901
Year: 2023
Citations: 4


 ⚡ Entropy Generation in Reactive Nanofluid Flow with Frictional Heating and Magnetic Force

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Physica Scripta
Volume: 96(2), Article: 025209
Year: 2020
Citations: 4


 🌀 Bioconvective Nanofluid Flow Through a Rotating Disk Under Joule Heating

Authors: T. Hayat, A. Alsaedi, S.A. Khan
Journal: Journal of Molecular Liquids
Volume: 324, Article: 114717
Year: 2021
Citations: 4


 💧 Analysis of Nanofluid Bioconvection in a Porous Medium with Joule Heating and Irreversibility

Authors: T. Hayat, S.A. Khan, A. Alsaedi
Journal: Journal of Molecular Liquids
Volume: 323, Article: 114617
Year: 2021
Citations: 4


 🧪 Bio-Convection of Micropolar Nanoliquid in a Porous Media with Thermophoresis and Soret Effects

Authors: S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Materials Research and Technology
Volume: 21, Pages: 2037–2047
Year: 2022
Citations: 3


 🔬 Entropy-Optimized Bio-Convective Flow of Nanofluid in a Porous Medium with Cattaneo–Christov Theory

Authors: T. Hayat, A. Alsaedi, S.A. Khan
Journal: International Journal of Heat and Mass Transfer
Volume: 180, Article: 121769
Year: 2021
Citations: 3


 🌡️ Heat Transfer Characteristics in Nanofluid Flow with Thermal Radiation and Activation Energy

Authors: S.A. Khan, A. Razaq, T. Hayat
Journal: Physica Scripta
Volume: 97(2), Article: 025213
Year: 2022
Citations: 3


 ⚗️ Micropolar Nanofluid Bioconvection Over a Stretching Sheet with Joule Heating and Chemical Reaction

Authors: S.A. Khan, T. Hayat, A. Alsaedi
Journal: Case Studies in Thermal Engineering
Volume: 31, Article: 101815
Year: 2022
Citations: 3


 🔥 Thermal Radiation and Magnetohydrodynamics in Bioconvective Nanofluid Flow Through Porous Media

Authors: S.A. Khan, A. Alsaedi, T. Hayat
Journal: Journal of Molecular Liquids
Volume: 337, Article: 116453
Year: 2021
Citations: 3

Majid Jabbari | Applied Mathematics | Best Researcher Award

Dr. Majid Jabbari | Applied Mathematics | Best Researcher Award

Faculty member at iaukhsh, Iran

Dr. Majid Jabbari 🛠️ is a distinguished Assistant Professor in Mechanical Engineering at Islamic Azad University of Khomainishahr, renowned for his pioneering research in vibration-based energy harvesting ⚡, piezoelectric materials, and fracture mechanics. With a Ph.D. from Isfahan University of Technology 🎓, he has contributed impactful publications in top-tier journals and presented at prestigious global forums. His engineering acumen extends to advanced mechanical design projects, including aerospace structures ✈️ and industrial damping systems. Dr. Jabbari’s academic journey is marked by excellence in teaching cutting-edge software tools 💻 and mentoring future engineers with vision. Decorated with multiple accolades 🏅 from the aviation and mining industries, he exemplifies the fusion of theoretical depth and practical innovation. His authorship of specialized books and close collaborations with leading research institutes reflect a career committed to scientific advancement 🔬 and societal benefit. Dr. Jabbari is a dynamic force in modern mechanical research and a deserving candidate for global recognition 🌍.

Professional Profile

Google Scholar
Scopus Profile

🎓 Education

Dr. Majid Jabbari’s academic pathway is a seamless blend of precision, passion, and perseverance. He completed all his higher education at the prestigious Isfahan University of Technology, Iran — earning a Bachelor’s, Master’s, and Ph.D. in Mechanical Engineering 🛠️. His master’s thesis explored “Crack Detection by Using Vibration Behavior,” while his doctoral dissertation ventured into the dynamic world of “Energy Harvesting from Vibration of Piezoelectric Multilayer Structures,” merging experimentation with numerical analysis 🔍. This robust foundation laid the groundwork for his future as a mechanical innovator. Throughout his studies, Dr. Jabbari received multiple academic distinctions 🏆, including superior student awards. His educational journey reflects a rare blend of theoretical depth, hands-on expertise, and a forward-thinking mindset, positioning him at the intersection of structural mechanics, materials science, and dynamic systems. His solid academic background empowers his future contributions to global mechanical advancements 🌐.

💼 Professional Experience

Dr. Majid Jabbari brings over two decades of hands-on teaching, research, and industry collaboration experience in mechanical engineering 🔧. Currently an Assistant Professor at the Islamic Azad University of Khomainishahr, he has served as a trusted instructor for numerous specialized subjects such as Fatigue and Fracture, Finite Element Methods, and Computer-Aided Machine Design 🖥️. He is also a software-savvy educator, proficient in CATIA, ADAMS, ANSYS, MARC, and PATRAN/NASTRAN, equipping students with essential industry tools. His engineering footprint spans across diverse sectors, including steel, automotive, aviation, and maritime domains 🛳️. Dr. Jabbari has led and supported major design projects such as airplane surface design, flutter analysis, and structural optimization. His collaborations with renowned universities and industrial giants like Foolad Mobarakeh Steel Company and PTDI Indonesia reflect his versatile professional scope. With practical brilliance and academic depth, Dr. Jabbari exemplifies a career driven by innovation, integrity, and interdisciplinary synergy 🚀.

🔬 Research Interests

Dr. Majid Jabbari’s research interests orbit around the intricate mechanics of materials, dynamic systems, and smart structures 🌟. His expertise thrives in vibration-based crack detection, piezoelectric energy harvesting, nonlinear dynamic analysis, and finite element modeling 📊. At the heart of his work lies the desire to convert ambient vibrations into usable energy, a frontier technology in sustainable engineering. He is also deeply invested in the study of fatigue, fracture behavior, and stress analysis under complex conditions — paving the way for safer and smarter mechanical designs 🧠. His explorations into advanced coatings, such as TiO2/SiC/SiO2 layers for graphite electrodes, signal a strong focus on durability and innovation in manufacturing. Bridging theory and practice, Dr. Jabbari seamlessly integrates computational simulations with experimental validation 🔎. His dynamic portfolio reflects a forward-looking vision aimed at enhancing structural health monitoring, energy efficiency, and robust mechanical systems that meet future industrial demands ⚙️.

🏅 Awards and Honors

Dr. Majid Jabbari is the recipient of numerous awards that celebrate both academic excellence and industrial innovation 🎖️. He earned the prestigious Superior Student Award and multiple research grants during his academic years at Isfahan University of Technology. His exceptional work in the aviation industry has been recognized multiple times — securing accolades in 2000, 2001, 2003, 2004, 2005, and 2006 for his outstanding design and technical contributions ✈️. In addition, he has been honored with the Top Expert Award from the Aviation Industry and received recognition from the mining sector for his applied engineering solutions ⛏️. His commitment to research excellence is further validated by accolades from Islamic Azad University and internationally recognized certification programs from Russia and Germany. These distinctions reflect not only his deep technical competence but also his role as a bridge between academia and industry. Dr. Jabbari’s accolades are a testimony to his dedication, brilliance, and visionary impact 🌐.

Conclusion

Dr. Majid Jabbari emerges as a multi-dimensional engineer, educator, and researcher whose career radiates intellectual brilliance and practical ingenuity 🔧. His journey—from a passionate student to a nationally and internationally recognized scholar—reflects consistency in excellence and a commitment to innovation. With extensive academic credentials, hands-on industrial involvement, and cutting-edge research, he has impacted fields ranging from energy harvesting to structural integrity. His published works, teaching legacy, and collaborative projects across top institutions and industries illustrate a profile that is both inspiring and influential 📘. Dr. Jabbari stands as a role model in engineering education, known not just for problem-solving but for visionary foresight. His work pushes the envelope in mechanical systems and sustainable design, making him a compelling contender for any prestigious recognition 🏆. As technology evolves, his contributions continue to shine as a beacon for emerging researchers and engineers ready to shape the future 💡.

Publications Top Notes

  • 🛠️ Crack Detection in Beams Using Experimental Modal Data and Finite Element Model
    Authors: H. Nahvi, M. Jabbari
    Year: 2005
    Citations: 341
    Published In: International Journal of Mechanical Sciences, Vol. 47(10), pp. 1477–1497
    📌 Summary: A pioneering study combining vibration analysis with FEM to identify structural cracks in beams.


  • 🔥 Effects of TiO₂/SiC/SiO₂ Coating on Graphite Electrode Consumption in Sublimation and Oxidation States via EAF Simulation and Experimentation
    Authors: H.A. Moghadam, M. Jabbari, S. Daneshmand, S.R. Jazi, A. Khosravi
    Year: 2021
    Citations: 12
    Published In: Surface and Coatings Technology, Vol. 420, Article 127340
    📌 Summary: Investigates triple-layer coatings on electrodes to reduce wear in high-temperature environments.


  • 🎢 Experimental and Numerical Insights into the Dynamics of a Nonlinear Piezoelectric Beam
    Authors: M. Jabbari, M. Ghayour, H.R. Mirdamadi
    Year: 2016
    Citations: 12
    Published In: Mechanics of Advanced Materials and Structures, Vol. 23(8), pp. 853–864
    📌 Summary: Explores complex vibrational behavior in smart piezoelectric structures under dynamic conditions.


  • 🔋 Energy Harvesting of a Multilayer Piezoelectric Beam: Resonant vs Off-Resonant Behavior
    Authors: M. Jabbari, M. Ghayour, H.R. Mirdamadi
    Year: 2017
    Citations: 10
    Published In: Journal of Engineering Materials and Technology, Vol. 139(3), Article 031008
    📌 Summary: Evaluates how multi-layer designs affect energy capture from mechanical oscillations.


  • 🎯 Strain Nodes and Their Influence on Energy Output of Cantilever Piezoelectric Beams Under Modal Excitation
    Author: M. Jabbari
    Year: 2018
    Citations: 9
    Published In: Modares Mechanical Engineering, Vol. 17(10), pp. 65–72
    📌 Summary: Targets optimal energy zones in beam configurations based on nodal strain distribution.


  • 🧪 Free Vibration Analysis of Piezoelectric Actuators with Graded BN Nanotube Reinforcements via Timoshenko Theory
    Authors: R. Abdellahi, M. Jabbari, A. Shamshiri
    Year: 2024
    Citations: 4
    Published In: Results in Engineering, Vol. 23, Article 102374
    📌 Summary: Blends functional nanotech with classic mechanics to study smart actuator dynamics.


  • ⚙️ Impact of TiO₂/SiC/SiO₂ Coating on Wear Resistance of Needle Graphite Electrodes in EDM Context
    Authors: H.A. Moghadam, M. Jabbari, S. Daneshmand, S.R. Jazi, A. Khosravi
    Year: 2021
    Citations: 2
    Published In: International Journal of Advanced Design & Manufacturing Technology, Vol. 14(2)
    📌 Summary: Applies coating science to improve endurance during electrical discharge machining.


  • 🧪 Fabrication of Protective SiC/TiO₂/SiO₂ Coating for Graphite Electrodes
    Authors: H.A. Moghadam, M. Jabbari, S. Daneshmand, S.R. Jazi, A. Khosravi
    Year: 2021
    Citations: 2
    Published In: Surface Review and Letters, Vol. 28(05), Article 2150038
    📌 Summary: Describes the synthesis and performance evaluation of multilayer protective coatings.


  • 🔄 Enhancing Energy Harvesting through Vibration Mode Shape Optimization
    Authors: M. Jabbari, M. Ghayour, H.R. Mirdamadi
    Year: 2016
    Citations: 2
    Published In: Advanced Computational Design, Vol. 1(2), pp. 155–173
    📌 Summary: Focuses on maximizing piezoelectric beam output by tuning vibrational response.


  • 🔍 Finite Element Analysis of Transient and Steady Dynamics in Nonlinear Piezoelectric Beams
    Authors: M. Jabbari, M. Ghayour, H.R. Mirdamadi
    Year: 2016
    Citations: 2
    Published In: Journal of Solid Mechanics, Vol. 8(2), pp. 247–261
    📌 Summary: Delivers an in-depth simulation approach to nonlinear smart beam behavior.


  • 🧠 Optimization of Piezoelectric MEMS for Power Output via Genetic Algorithms
    Authors: M. Jabbari, M. Eghdami
    Year: 2023
    Citations: 1
    Published In: Aerospace Knowledge and Technology Journal, Vol. 11(2), pp. 165–181
    📌 Summary: Introduces AI-driven material and shape tuning for better MEMS energy conversion.


  • ⚡ Dynamic Stiffness-Based Electric Response Prediction in Piezoelectric Beams
    Authors: M. Jabbari, B. Ahmadi
    Year: 2020
    Citations: 1
    Published In: Journal of Applied and Computational Sciences in Mechanics, Vol. 31(2)
    📌 Summary: Models the electrical reaction of smart materials under dynamic excitation using advanced stiffness methods.

Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Prof. Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Dr.Sci. at Institute for Informatics and Automation Problems NAS of Republic of Armenia

Professor Ashot Sergei Gevorkyan is a distinguished theoretical physicist and mathematician specializing in quantum physics, mathematical modeling, and complex dynamical systems. Serving as Head of Scientific Direction for Modeling of Multiscale Physical-Chemical Processes, he has significantly contributed to foundational quantum mechanics, quantum chaos, stochastic systems, and spin dynamics. With a PhD from Leningrad State University and a Doctor of Sciences from St. Petersburg State University, his career spans prestigious institutions across Armenia and Russia. Prof. Gevorkyan has led numerous international research projects, including INTAS and ISTC grants, and developed high-performance parallel algorithms for quantum simulations. His prolific publication record in leading journals like Foundations of Physics, Physics of Atomic Nuclei, and Particles highlights groundbreaking work on quantum vacuum, three-body systems, and self-organizing processes. A former editorial board member of the Journal of Computational Science (Elsevier), he continues to push the boundaries of quantum theory and computational modeling with remarkable depth and innovation.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Professor Ashot Gevorkyan earned his foundational education in theoretical physics and mathematics at the Leningrad State University, where he received his PhD in Physics and Mathematics in 1978. His doctoral work focused on nonlinear dynamical systems and quantum mechanics. He later earned the prestigious Doctor of Sciences degree in 1990 from the renowned St. Petersburg State University, cementing his expertise in the fields of quantum physics and applied mathematics. Throughout his academic journey, Prof. Gevorkyan has continually integrated rigorous mathematical frameworks with physical theory, demonstrating a strong interdisciplinary foundation. His academic background set the stage for decades of pioneering research at the interface of theoretical physics, stochastic dynamics, and computational modeling. In addition to his formal degrees, Prof. Gevorkyan has participated in numerous international workshops, advanced courses, and research collaborations, enriching his academic repertoire and keeping him at the forefront of contemporary physics and mathematical innovation.

Professional Experience

Prof. Ashot Gevorkyan has held a variety of prominent academic and research roles throughout his distinguished career. He began as a researcher at the Yerevan Physics Institute and later joined the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia, where he led groundbreaking work in theoretical modeling and computational physics. He also served as a professor at the State Engineering University of Armenia and collaborated internationally with institutions in Russia and across Europe. Currently, he is Head of the Scientific Direction for Modeling of Multiscale Physical-Chemical Processes. Prof. Gevorkyan has been a principal investigator in multiple large-scale international research projects under the auspices of INTAS, ISTC, and other funding bodies, focusing on quantum chaos, complex systems, and nonlinear dynamics. His leadership in scientific modeling and computational theory has earned him a reputation as a trailblazer in both academic and applied physics communities.

Research Interest

Prof. Ashot Gevorkyan’s research interests lie at the intersection of theoretical physics, quantum mechanics, and complex dynamical systems. He is particularly renowned for his work in quantum chaos, stochastic dynamics, and modeling of multiscale systems. His investigations explore the nature of quantum vacuum, self-organizing processes in quantum systems, and nonlinear spin dynamics in stochastic fields. He has also made notable advances in mathematical modeling using high-performance parallel computing to simulate many-body quantum systems and dissipative environments. His work often combines mathematical rigor with physical intuition, producing results that influence both theory and practical applications. Prof. Gevorkyan’s research portfolio extends to optical turbulence, quantum three-body problems, and fractal structures in open quantum systems. His cross-disciplinary approach has fostered collaborations across mathematics, physics, and computer science, contributing significantly to our understanding of complex physical phenomena and enabling new computational techniques in modern physics.

Award and Honor

Throughout his career, Prof. Ashot Gevorkyan has received numerous awards and honors recognizing his exceptional contributions to science. He has been honored by leading scientific institutions for his pioneering work in quantum theory and mathematical modeling. His projects have received support and recognition from international research programs such as INTAS (International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union) and ISTC (International Science and Technology Center), reflecting the global impact of his research. He has been invited to serve as a keynote speaker and visiting scientist at several prominent international conferences and workshops. Prof. Gevorkyan also served on the editorial board of the Journal of Computational Science (Elsevier), a role that underscores his status as a leading voice in the computational physics community. These accolades affirm his influence in shaping contemporary research across theoretical and applied physics.

Conclusion

Professor Ashot Gevorkyan stands as a luminary in the fields of theoretical physics and computational mathematics. His deep expertise in quantum systems, chaotic dynamics, and complex modeling has not only advanced fundamental science but also provided new computational tools for understanding nature’s most intricate processes. With a career spanning over four decades, he has demonstrated an unwavering commitment to scientific excellence through research, teaching, and international collaboration. His interdisciplinary work bridges theoretical insights with practical innovations, setting a high standard in modern scientific inquiry. Recognized both nationally and internationally, Prof. Gevorkyan continues to inspire the global scientific community through his profound intellect, visionary ideas, and groundbreaking publications. His legacy is defined by a lifelong pursuit of knowledge and a passion for decoding the complexities of the universe through mathematics and physics.

Publications Top Notes

  • Title: General Three-Body Problem in Conformal-Euclidean Space: New Properties of a Low-Dimensional Dynamical System
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2024
    Source: Particles, 2024

  • Title: Quantum Chromodynamics of the Nucleon in Terms of Complex Probabilistic Processes
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2024
    Citations: 1
    Source: Symmetry, 2024

  • Title: Time-Dependent 4D Quantum Harmonic Oscillator and Reacting Hydrogen Atom
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2023
    Citations: 1
    Source: Symmetry, 2023

  • Title: Theoretical and Numerical Study of Self-Organizing Processes in a Closed System Classical Oscillator and Random Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev, K.A. Movsesyan
    Year: 2022
    Citations: 2
    Source: Mathematics, 2022

  • Title: Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2021
    Citations: 3
    Source: Symmetry, 2021

  • Title: Gamma Radiation Production Using Channeled Positron Annihilation in Crystals
    Authors: A.S. Gevorkyan, K.B. Oganesyan, Y.V. Rostovtsev, G. Kurizki
    Year: 2015
    Citations: 61
    Source: Laser Physics Letters, 12(7), 076002

  • Title: Dielectric Permittivity Superlattice Formation
    Authors: G.A. Amatuni, A.S. Gevorkyan, S.G. Gevorkian, A.A. Hakobyan, K.B. Oganesyan, et al.
    Year: 2008
    Citations: 60
    Source: Laser Physics, 18, 608–620

  • Title: Statistical Properties of Random Environment of 1D Quantum N-Particles System in External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan
    Year: 2010
    Citations: 45
    Source: Physics of Atomic Nuclei, 73, 320–325

  • Title: A Disordered 1D Quantum N-Particle System in an Environment under the Influence of an External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan, G.O. Sargsyan, et al.
    Year: 2010
    Citations: 44
    Source: Physica Scripta, 2010 (T140), 014045

  • Title: Quantum-Mechanical Channel of Interactions Between Macroscopic Systems
    Authors: R.S. Sargsyan, G.G. Karamyana, A.S. Gevorkyan, A.Y. Khrennikov
    Year: 2010
    Citations: 22
    Source: AIP Conference Proceedings, 1232(1), 267

  • Title: Random Motion of Quantum Harmonic Oscillator – Thermodynamics of Nonrelativistic Vacuum
    Authors: A.V. Bogdanov, A.S. Gevorkyan, A.G. Grigoryan
    Year: 1999
    Citations: 20
    Source: AMS IP Studies in Advanced Mathematics, 13, 81–112

  • Title: Bioscope: New Sensor for Remote Evaluation of the Physiological State of Biological Systems
    Authors: R.S. Sargsyan, A.S. Gevorkyan, G.G. Karamyan, V.T. Vardanyan, et al.
    Year: 2011
    Citations: 15
    Source: Physical Properties of Nanosystems, 299–309

  • Title: Three Body Multichannel Scattering as a Model of Irreversible Quantum Mechanics
    Authors: A.V. Bogdanov, A.S. Gevorkyan
    Year: 1997
    Citations: 13
    Source: arXiv preprint, quant-ph/9712022

  • Title: Nonrelativistic Quantum Mechanics with Fundamental Environment
    Author: A.S. Gevorkyan
    Year: 2012
    Citations: 12
    Source: Theoretical Concepts of Quantum Mechanics, 161–187

  • Title: Retracted: New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System under the Influence of External Field
    Authors: A.S. Gevorkyan, C.K. Hu, S. Flach
    Year: 2010
    Citations: 12
    Source: Transactions on Computational Science VII, E1–E1

  • Title: Regular and Chaotic Quantum Dynamics in Atom-Diatom Reactive Collisions
    Authors: A.S. Gevorkyan, A.V. Bogdanov, G. Nyman
    Year: 2008
    Citations: 12
    Source: Physics of Atomic Nuclei, 71, 876–883

  • Title: Exactly Solvable Models of Stochastic Quantum Mechanics within the Framework of Langevin-Schroedinger Type Equations
    Author: A.S. Gevorkyan
    Year: 2004
    Citations: 11
    Source: Topics in Analysis and its Applications, 415–442

  • Title: A New Parallel Algorithm for Simulation of a Spin-Glass System on Scales of Space-Time Periods of an External Field
    Authors: A.S. Gevorkyan, A.G. Abadzhyan, G.S. Sukiasyan
    Year: 2011
    Citations: 10
    Source: Lab. of Information Technologies

 

Muhammad Marwan | Applied Mathematics | Best Researcher Award

Assoc. Prof. Dr. Muhammad Marwan | Applied Mathematics | Best Researcher Award

Associate professor at Linyi university, China

Dr. Marwan Muhammad is a distinguished researcher in applied mathematics, specializing in bifurcation theory, chaos, fractals, mobile chaotic robots, control theory, synchronization, and secure communication. With an H-index of 11, he has published extensively in high-impact journals such as Fractals, Nonlinear Dynamics, and IEEE-IoT. Currently an Associate Professor at Linyi University, China, he has over a decade of teaching and research experience, including a postdoctoral fellowship at Zhejiang Normal University (ZJNU). His work integrates mathematical theory with practical applications in cryptography, robotics, and UAV dynamics. Dr. Muhammad has successfully supervised multiple Master’s students and collaborated on funded research projects. His global academic exposure, particularly in China and Pakistan, enhances his research perspective. While his contributions are significant, further international collaborations, industry engagement, and competitive research grants would solidify his standing as a leading expert in computational and applied mathematics.

Professional Profile

Google Scholar
ORCID Profile

Education

Dr. Marwan Muhammad holds a Ph.D. in Applied Mathematics from the Institute of Space Technology, Pakistan, where he specialized in nonlinear dynamics and stability analysis. His doctoral research focused on applying nonlinear tools to chaotic systems. He earned an M.S. in Mathematics from COMSATS Institute of Information Technology, Pakistan, with a thesis on Fejér-Hadamard inequalities for convex functions. His academic journey began with a B.S. in Mathematics from Islamia College University, Peshawar, where he was awarded a Gold Medal for his outstanding performance. His early education includes an HSSC and SSC from the Peshawar Board, securing top grades. Throughout his academic career, Dr. Muhammad demonstrated a strong foundation in theoretical and applied mathematics, equipping him with the expertise needed to excel in research and teaching. His education has played a pivotal role in shaping his research trajectory, particularly in bifurcation theory, chaos, fractals, and control systems.

Professional Experience

Dr. Marwan Muhammad has over a decade of experience in academia and research. He is currently an Associate Professor at Linyi University, China, where he teaches and supervises research in applied mathematics. Previously, he completed a postdoctoral fellowship at Zhejiang Normal University (ZJNU), China, focusing on advanced topics in nonlinear dynamics. His professional journey includes serving as a Lecturer at Islamabad Model Postgraduate College, Riphah International University, and the Higher Education Department of Peshawar. His teaching portfolio covers a broad range of mathematical disciplines, including computational mathematics, dynamical systems, and mathematical modeling. Additionally, he has worked on a research project funded by the Higher Education Commission (HEC) of Pakistan, leading to several high-impact publications. His international exposure, particularly in China and Pakistan, has enriched his academic perspective, allowing him to integrate diverse mathematical techniques into his research and contribute significantly to the global scientific community.

Research Interest

Dr. Marwan Muhammad’s research focuses on nonlinear dynamics, bifurcation theory, chaos, fractals, control theory, synchronization, and secure communication. His work in mobile chaotic robots and multi-scroll attractors has applications in cryptography, robotics, and artificial intelligence. He is particularly interested in the mathematical modeling of complex systems, including UAV dynamics, plasma systems, and satellite chaotic systems. His contributions extend to fractional calculus, where he has analyzed tumor-immune interactions and porous medium equations. His research also explores numerical methods for solving chaotic systems, emphasizing computational efficiency and accuracy. Dr. Muhammad’s interdisciplinary approach integrates mathematics, physics, and engineering, leading to innovative solutions for real-world problems. His recent publications in journals like Fractals and Nonlinear Dynamics demonstrate his ability to bridge theoretical insights with practical applications, positioning him as a key contributor to the fields of computational and applied mathematics.

Awards and Honors

Dr. Marwan Muhammad has been recognized for his academic excellence and research contributions. He was awarded a Gold Medal for securing the highest distinction in his undergraduate studies at Islamia College University, Peshawar. His research has been published in prestigious journals, highlighting his impact in the field of applied mathematics. His contributions to nonlinear dynamics and chaotic systems have earned him invitations to collaborate on international research projects. Additionally, his supervision of Master’s students and successful research collaborations reflect his commitment to academic mentorship. His work has received recognition from funding agencies such as the Higher Education Commission (HEC) of Pakistan, under which he successfully led research projects. While his accolades are notable, continued participation in international awards, securing competitive research grants, and expanding collaborations with leading global institutions would further elevate his reputation as a distinguished researcher in computational and applied mathematics.

Conclusion

Dr. Marwan Muhammad is an accomplished mathematician whose research in nonlinear dynamics, chaos, and fractals has significantly contributed to applied mathematics. With a strong educational foundation, international research experience, and extensive teaching background, he has established himself as a key figure in computational mathematics. His work has practical applications in cryptography, robotics, and control systems, making it relevant to both academia and industry. While his publications and collaborations are impressive, expanding his research network, securing additional funding, and engaging in interdisciplinary projects could further enhance his impact. His dedication to mentoring students and advancing mathematical knowledge underscores his potential for continued success. With sustained efforts, Dr. Muhammad is poised to become a leading authority in his field, driving innovation and discovery in mathematical sciences.

Publications Top Noted

  • Coexisting attractor in a gyrostat chaotic system via basin of attraction and synchronization of two nonidentical mechanical systems
    Authors: M. Marwan, V. Dos Santos, M.Z. Abidin, A. Xiong
    Year: 2022
    Citations: 11
    Source: Mathematics, 10(11), 1914

  • Retardational effect and Hopf bifurcations in a new attitude system of quad-rotor unmanned aerial vehicle
    Authors: M. Fiaz, M. Aqeel, M. Marwan, M. Sabir
    Year: 2021
    Citations: 11
    Source: International Journal of Bifurcation and Chaos, 31(09), 2150127

  • Control and numerical analysis for cancer chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, M. Shaukat
    Year: 2020
    Citations: 11
    Source: Archive of Applied Mechanics, 90, 2597-2608

  • Image cryptography communication using FPAA-based multi-scroll chaotic system
    Authors: K. Karawanich, J. Chimnoy, F. Khateb, M. Marwan, P. Prommee
    Year: 2024
    Citations: 8
    Source: Nonlinear Dynamics, 112(6), 4951-4976

  • Hopf bifurcation analysis for liquid-filled gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
    Authors: M. Sabir, S. Ahmad, M. Marwan
    Year: 2021
    Citations: 8
    Source: Open Physics, 19(1), 539-550

  • Investigation of fractional-ordered tumor-immune interaction model via fractional-order derivative
    Authors: G. Ali, M. Marwan, U.U. Rahman, M. Hleili
    Year: 2024
    Citations: 7
    Source: Fractals, 32(06), 1-10

  • Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems
    Authors: M. Marwan, M.Z. Abidin, H. Kalsoom, M. Han
    Year: 2022
    Citations: 7
    Source: Fractal and Fractional, 6(4), 189

  • Generation of multi-scrolls in coronavirus disease 2019 (COVID-19) chaotic system and its impact on the zero-COVID policy
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 6
    Source: Scientific Reports, 13, 13954

  • Novel approaches for solving fuzzy fractional partial differential equations
    Authors: M. Osman, Y. Xia, M. Marwan, O.A. Omer
    Year: 2022
    Citations: 6
    Source: Fractal and Fractional, 6(11), 656

  • Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications
    Authors: H. Kalsoom, M. Vivas-Cortez, M.Z. Abidin, M. Marwan, Z.A. Khan
    Year: 2022
    Citations: 6
    Source: Symmetry, 14(7), 1449

  • Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputs—application to chaos synchronization
    Authors: L. Moysis, M. Tripathi, M.K. Gupta, M. Marwan, C. Volos
    Year: 2022
    Citations: 6
    Source: Archives of Control Sciences, 32

  • Mixed obstacle avoidance in mobile chaotic robots with directional keypads and its non-identical generalized synchronization
    Authors: M. Marwan, F. Li, S. Ahmad, N. Wang
    Year: 2025
    Citations: 5
    Source: Nonlinear Dynamics, 113(3), 2377-2390

  • Chaotic behavior of Lorenz-based chemical system under the influence of fractals
    Authors: M. Marwan, A. Xiong, M. Han, R. Khan
    Year: 2024
    Citations: 4
    Source: Match Communications in Mathematical and Computer Chemistry, 91(2), 307-336

  • Control analysis of virotherapy chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, A. Rafiq
    Year: 2022
    Citations: 4
    Source: Journal of Biological Dynamics, 16(1), 585-595

  • Hidden covers (wings) in the fractals of chaotic systems using advanced Julia function
    Authors: M. Marwan, M. Han, M. Osman
    Year: 2023
    Citations: 3
    Source: Fractals, 31(09), 2350125

  • Generalized external synchronization of networks based on clustered pandemic systems—The approach of COVID-19 towards influenza
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 3
    Source: PLOS ONE, 18(10), e0288796

  • Existence of Solution and Self‐Exciting Attractor in the Fractional‐Order Gyrostat Dynamical System
    Authors: M. Marwan, G. Ali, R. Khan
    Year: 2022
    Citations: 3
    Source: Complexity, 2022(1), 3505634

  • On the analytical approach of codimension-three degenerate Bogdanov-Takens (BT) bifurcation in satellite dynamical system
    Authors: M. Marwan, M.Z. Abidin
    Year: 2023
    Citations: 2
    Source: Journal of Nonlinear Modeling and Analysis

  • On the global well-posedness of rotating magnetohydrodynamics equations with fractional dissipation
    Authors: M.Z. Abidin, M. Marwan, H. Kalsoom, O.A. Omer
    Year: 2022
    Citations: 2
    Source: Fractal and Fractional, 6(6), 340

  • Semi-analytical analysis of a fractional-order pandemic dynamical model using non-local operator
    Authors: M. Marwan, G. Ali, F. Li, S.A.O. Abdallah, T. Saidani
    Year: 2025
    Source: Fractals

 

Halima Bensmail | Applied Mathematics | Best Researcher Award

Prof. Dr. Halima Bensmail | Applied Mathematics | Best Researcher Award

Principal scientist at Qatar Computing Research Institute, Qatar

Dr. Halima Bensmail is a distinguished Principal Scientist at the Qatar Computing Research Institute, specializing in machine learning, bioinformatics, biostatistics, and statistical modeling. With a Ph.D. in Statistics (Summa Cum Laude) from the University Pierre & Marie Curie, she has made significant contributions to Bayesian inference, multivariate analysis, and precision medicine. She has an impressive research record with an H-index of 31, i10-index of 54, and around 140 publications in prestigious journals such as Nature Communications, JASA, and IEEE TNNLS. As the founder of the Statistical Machine Learning and Bioinformatics group at QCRI, she has led groundbreaking projects, including the development of open-source data-driven tools like the PRISQ pre-diabetes screening model and MCLUST clustering algorithm. With extensive academic experience in the USA, France, and the Netherlands, she has mentored numerous postdocs and students, shaping the next generation of researchers. Her expertise and leadership make her a key figure in data science and precision health.

Professional Profile 

Google Scholar
Scopus Profile

Education

Dr. Halima Bensmail holds a Ph.D. in Statistical Machine Learning (Summa Cum Laude) from the University Pierre & Marie Curie (Paris 6), where she specialized in Bayesian inference, spectral decomposition, and mixture models. Her thesis focused on deterministic and Bayesian model-based clustering and classification for data science applications. Prior to that, she earned an M.S. in Machine Learning from the same university, with a focus on probability, financial modeling, and stochastic processes. She also holds a Bachelor’s degree in Applied Mathematics and Statistics from the University Mohammed V in Morocco, where she gained expertise in numerical analysis, stochastic processes, topology, and mathematical programming. Throughout her academic journey, she was mentored by esteemed professors and developed a strong foundation in theoretical and applied statistics. Her educational background has laid the groundwork for her pioneering research in machine learning, bioinformatics, and data-driven modeling for real-world applications.

Professional Experience

Dr. Bensmail is currently a Principal Scientist at the Qatar Computing Research Institute (QCRI), where she leads research in bioinformatics, statistical machine learning, and artificial intelligence. She also serves as a Full Professor in the College of Science and Engineering at Hamad Bin Khalifa University and a Visiting Full Professor at Texas A&M University at Qatar. Previously, she held tenured faculty positions at Virginia Medical School and the University of Tennessee, where she contributed significantly to public health and business administration research. She has also worked as a Research Scientist at the University of Leiden, a scientist at the Fred Hutchinson Cancer Research Center, and a postdoctoral researcher at the University of Washington. With decades of experience across academia and research institutions in the U.S., Europe, and the Middle East, she has built expertise in developing statistical and AI-driven solutions for biomedical and computational challenges.

Research Interests

Dr. Bensmail’s research spans statistical machine learning, bioinformatics, and precision medicine. She has developed novel clustering algorithms, such as an advanced Bayesian clustering model implemented in the MCLUST package, and statistical methods for analyzing Next-Generation Sequencing (NGS) data. She is also interested in computational biology, specifically protein-protein interactions, protein solubility, and structural biology. Her work includes dimensionality reduction techniques like nonnegative matrix factorization and discriminative sparse coding for domain adaptation. In the field of precision medicine, she has designed PRISQ, a statistical model for pre-diabetes screening. Her broader interests include Bayesian statistics, functional data analysis, information theory, and high-dimensional data modeling. With a strong focus on developing real-world data-driven tools, she actively contributes to statistical methodologies that enhance decision-making in medicine, genomics, and artificial intelligence applications.

Awards and Honors

Dr. Bensmail has received numerous accolades for her contributions to machine learning, bioinformatics, and statistical modeling. Her work has been widely recognized, with over 140 peer-reviewed publications and an H-index of 31, demonstrating the impact of her research. She has secured research grants and led major projects in AI-driven healthcare solutions. Her contributions to the field have been acknowledged through invitations to serve as a keynote speaker at international awards and as an editorial board member for high-impact journals. She has also been instrumental in mentoring young researchers, postdoctoral fellows, and doctoral students, fostering the next generation of scientists in AI, statistics, and bioinformatics. Additionally, her work on statistical methods for precision medicine and biomedical informatics has gained international recognition, positioning her as a leading expert in the field of data science for healthcare and computational biology.

Conclusion

Dr. Halima Bensmail is a pioneering researcher in machine learning, statistical modeling, and bioinformatics, with a career spanning leading institutions in the U.S., Europe, and the Middle East. Her contributions to clustering algorithms, high-dimensional data analysis, and precision medicine have made a lasting impact on the fields of AI and computational biology. As a mentor and leader, she has shaped numerous young scientists and postdocs, driving innovation in data science applications. With a robust publication record, influential research projects, and a dedication to developing real-world AI-driven solutions, she stands as a leading figure in statistical machine learning. Her expertise and contributions continue to push the boundaries of knowledge in bioinformatics, artificial intelligence, and healthcare analytics, making her a strong candidate for prestigious research awards and recognition in scientific communities worldwide.

Publications Top Noted

 

Shiqing Zhang | Applied Mathematics | Excellence in Applied Mathematics

Prof. Shiqing Zhang | Applied Mathematics | Excellence in Applied Mathematics

Math Department at Sichuan University, China

Dr. Shiqing Zhang is a distinguished professor of mathematics at Sichuan University, specializing in Nonlinear Functional Analysis, Celestial Mechanics, Differential Equations, and Mathematical Physics. With a Ph.D. from Nankai University (1991), he has made significant contributions to applied mathematics, particularly in optimization algorithms, N-body problems, and mathematical modeling. His extensive publication record in high-impact journals and multiple National Science Foundation of China (NSFC) research grants highlight his sustained research excellence. His work has applications in astrophysics, computational mathematics, and engineering. Recognized early as a Distinguished Young Teacher at Chongqing University (1996), Dr. Zhang has since continued to advance the field with groundbreaking research. While his academic contributions are remarkable, expanding industry collaborations and international recognition could further enhance his impact. Overall, his expertise and achievements make him a strong candidate for the Excellence in Applied Mathematics Award, with research that bridges theoretical mathematics and real-world applications.

Professional Profile 

Scopus Profile

Education 

Dr. Shiqing Zhang has a strong academic background in mathematics, beginning with his B.S. degree from Chongqing University in 1985, followed by a Master’s degree from the same institution in 1987. He pursued advanced studies in mathematical sciences and earned his Ph.D. from Nankai University in 1991. Throughout his academic journey, Dr. Zhang has focused on deep theoretical aspects of mathematics, particularly in applied fields such as functional analysis, celestial mechanics, and differential equations. His education at renowned Chinese universities laid the foundation for his extensive contributions to mathematical research. His academic progression reflects a deep commitment to advancing mathematical knowledge and solving complex mathematical problems. With rigorous training in both pure and applied mathematics, Dr. Zhang’s educational background provided him with the analytical skills and problem-solving abilities necessary to excel in research, making him a leading figure in applied mathematics and a strong candidate for prestigious academic recognition.

Professional Experience 

Dr. Shiqing Zhang has built a distinguished academic career spanning over three decades. He began his professional journey at Chongqing University, where he served as an Assistant Professor (1988–1993) and later as an Associate Professor (1993–1997). His exceptional contributions to mathematics led to his promotion as a Professor at Chongqing University in 1997, a position he held until 2002. He then moved to Yangzhou University (2002–2005) as a Professor before joining Sichuan University in 2005, where he has been a Professor of Mathematics ever since. His professional trajectory demonstrates a continuous commitment to academia, teaching, and research. Over the years, he has played a crucial role in mentoring students, leading research initiatives, and contributing to the advancement of applied mathematics. His vast teaching experience, combined with his research contributions, establishes him as a well-respected authority in the field of mathematical sciences.

Research Interest

Dr. Shiqing Zhang’s research interests lie in Nonlinear Functional Analysis, Celestial Mechanics, Differential Equations, and Mathematical Physics. His work focuses on developing analytical methods to solve complex problems in applied mathematics. He has made significant contributions to the study of central configurations in celestial mechanics, periodic solutions in Hamiltonian systems, and optimization problems using variational methods. His research extends to iterative algorithms, monotone inclusion problems, and function space analysis, which have applications in physics, engineering, and computational sciences. Dr. Zhang has published extensively in high-impact mathematical journals, providing innovative solutions to long-standing problems. His work on mountain pass theorem applications, action-minimizing solutions, and functional inequalities showcases his depth in applied mathematics. By bridging theory with real-world applications, his research continues to shape developments in both pure and applied mathematical disciplines, reinforcing his position as a leading researcher in the field.

Awards and Honors 

Dr. Shiqing Zhang has been recognized for his contributions to mathematics through numerous research grants and honors. He has received multiple research grants from the National Natural Science Foundation of China (NSFC), spanning several years, including major funding from 1996 to 2024. These grants have supported his research in applied mathematics, particularly in nonlinear functional analysis and celestial mechanics. In recognition of his excellence in teaching and research, he was awarded the title of Distinguished Young Teacher at Chongqing University in 1996, highlighting his impact on mathematics education. His ability to secure continuous funding reflects the high quality and significance of his research contributions. Dr. Zhang’s strong academic credentials, numerous publications, and funded projects illustrate his expertise and commitment to mathematical advancements. These accolades confirm his role as a key figure in applied mathematics, making him a distinguished candidate for awards recognizing excellence in research.

Conclusion

Dr. Shiqing Zhang’s extensive contributions to applied mathematics, nonlinear functional analysis, and celestial mechanics establish him as a leading researcher in the field. With a solid educational foundation from top Chinese universities and a distinguished academic career spanning over three decades, he has significantly impacted both research and education. His numerous research grants from NSFC, coupled with high-quality publications in renowned mathematical journals, demonstrate the depth and influence of his work. His recognition as a Distinguished Young Teacher at Chongqing University further underscores his contributions to academia. Dr. Zhang’s research in differential equations, optimization, and mathematical physics bridges theoretical advancements with practical applications, enhancing the understanding of complex mathematical models. Given his academic excellence, research achievements, and long-standing contributions, he is a highly suitable candidate for the Excellence in Applied Mathematics Award, reflecting his dedication to advancing mathematical sciences globally.

Publications Top Noted

 

LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. Lin-Tian Luh is a distinguished mathematician specializing in radial basis functions, approximation theory, numerical mathematics, and topology. With a Ph.D. from the University of Göttingen, he has made significant contributions to the field, particularly in developing error bounds for high-dimensional interpolation and advancing the choice theory of shape parameters. Over his academic career at Providence University, where he served as a lecturer, associate professor, and full professor, he has been instrumental in enhancing research environments and collaborating internationally, notably with Professor R. Schaback. Dr. Luh has published extensively in high-impact journals, presented at major awards worldwide, and held editorial roles in reputable mathematical journals. His groundbreaking work on shape parameter selection has gained international recognition, solving longstanding challenges in the field. Honored multiple times for research excellence, he continues to push the boundaries of numerical analysis and computational mathematics, making profound impacts on scientific advancements.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Lin-Tian Luh obtained his Ph.D. in Mathematics from the University of Göttingen, Germany, where he studied under leading experts in numerical analysis and approximation theory. His doctoral research focused on radial basis functions and their applications in high-dimensional interpolation. Prior to his Ph.D., he completed his undergraduate and master’s studies in Taiwan, building a strong foundation in pure and applied mathematics. Throughout his academic journey, he demonstrated exceptional analytical skills and a deep passion for solving complex mathematical problems. His international education provided him with a broad perspective, allowing him to integrate diverse mathematical techniques into his research. Exposure to rigorous mathematical training at Göttingen further refined his expertise in error estimation and shape parameter selection. His academic achievements laid the groundwork for a successful career in both theoretical and applied mathematics, enabling him to contribute significantly to the advancement of numerical methods in scientific computation.

Professional Experience

Dr. Lin-Tian Luh has had a distinguished academic career, spanning decades of research, teaching, and mentorship. He began as a lecturer at Providence University in Taiwan, where he quickly established himself as an authority in numerical mathematics. Rising through the ranks to associate professor and later full professor, he played a pivotal role in shaping the university’s mathematics curriculum and fostering a strong research environment. He has collaborated extensively with international scholars, including Professor R. Schaback, contributing to groundbreaking advancements in radial basis function interpolation. Dr. Luh has also held visiting research positions at prestigious institutions, further strengthening his global academic impact. His dedication to teaching has inspired numerous students to pursue research in computational mathematics. Beyond academia, he has served on editorial boards of leading mathematical journals and as a reviewer for high-impact publications, solidifying his reputation as a key figure in numerical analysis and approximation theory.

Research Interest

Dr. Lin-Tian Luh’s research interests lie in numerical analysis, radial basis function (RBF) interpolation, approximation theory, and topology. He has made substantial contributions to high-dimensional interpolation techniques, particularly in error estimation and shape parameter selection for RBF methods. His work on developing optimal strategies for shape parameter choice has addressed longstanding challenges in computational mathematics, influencing applications in engineering, data science, and machine learning. He is also deeply engaged in the theoretical aspects of approximation theory, exploring new methods to improve the efficiency and accuracy of numerical algorithms. Dr. Luh’s research extends into applied topology, where he investigates connections between geometric structures and computational models. His interdisciplinary approach has led to collaborations across various fields, reinforcing the importance of mathematical theory in real-world problem-solving. With numerous publications in top-tier journals, his work continues to shape the evolving landscape of numerical mathematics and scientific computation.

Awards and Honors

Dr. Lin-Tian Luh has received multiple accolades for his exceptional contributions to mathematics, particularly in numerical analysis and approximation theory. He has been recognized by prestigious mathematical societies and institutions for his pioneering work in radial basis function interpolation. His research on shape parameter selection has earned international acclaim, leading to invitations as a keynote speaker at major mathematical awards. Dr. Luh has also been honored with excellence in research awards from Providence University, where his work has significantly advanced the institution’s academic reputation. In addition, he has received grants and fellowships supporting his innovative research, further validating his impact in the field. His editorial contributions to leading mathematical journals have also been acknowledged, highlighting his influence in shaping contemporary numerical mathematics. These honors reflect his dedication, originality, and profound impact on both theoretical and applied mathematics, reinforcing his legacy as a leader in computational and approximation theory.

Conclusion

Dr. Lin-Tian Luh is a renowned mathematician whose work in numerical analysis, radial basis function interpolation, and approximation theory has significantly influenced the field. With a strong educational background from the University of Göttingen and an illustrious academic career at Providence University, he has played a crucial role in advancing research and mentoring future generations of mathematicians. His collaborations with international scholars and contributions to high-dimensional interpolation techniques have provided groundbreaking insights into shape parameter selection and error estimation. Recognized globally for his research excellence, he has received multiple awards and honors, further establishing his prominence in mathematical sciences. Dr. Luh’s work continues to inspire and drive progress in numerical computation, bridging theoretical advancements with practical applications. His dedication to expanding mathematical knowledge and fostering innovation ensures that his contributions will have a lasting impact on the field, shaping the future of approximation theory and scientific computing.

Publications Top Noted

  • The Shape Parameter in the Shifted Surface Spline—A Sharp and Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2024
    • Source: Mathematics (MDPI)
  • Solving Poisson Equations by the MN-Curve Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • The Shape Parameter in the Shifted Surface Spline—An Easily Accessible Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameter—A Purely Scattered Data Approach

    • Author: Lin-Tian Luh
    • Year: 2020
    • Source: Engineering Analysis with Boundary Elements (EABE)
  • The Choice of the Shape Parameter–A Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2019
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Mystery of the Shape Parameter III

    • Author: Lin-Tian Luh
    • Year: 2016
    • Source: Applied and Computational Harmonic Analysis (Elsevier)
  • The Mystery of the Shape Parameter IV

    • Author: Lin-Tian Luh
    • Year: 2014
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function II

    • Author: Lin-Tian Luh
    • Year: 2013
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Computers and Mathematics with Applications (Elsevier)
  • The Shape Parameter in the Shifted Surface Spline III

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • Evenly Spaced Data Points and Radial Basis Functions

    • Author: Lin-Tian Luh
    • Year: 2011
    • Source: WIT Transactions on Modelling and Simulation
  • The Crucial Constants in the Exponential-Type Error Estimates for Gaussian Interpolation

    • Author: Lin-Tian Luh
    • Year: 2008
    • Source: Analysis in Theory and Applications
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation (Preprint)

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Multidisciplinary Digital Publishing Institute (MDPI Preprints)

 

Vladimir Kodnyanko | Applied Mathematics | Best Researcher Award

Dr. Vladimir Kodnyanko | Applied Mathematics | Best Researcher Award

Professor at Siberian Federal University, Russia

Professor Vladimir Kodnyanko, a Doctor of Technical Sciences, serves as a Professor in the Department of Standardization, Metrology, and Quality Management at the Polytechnic Institute of Siberian Federal University. Born on October 26, 1951, in Podtiosovo, Krasnoyarsk Territory, he graduated from Krasnoyarsk State University in 1974 with a degree in Mathematics. His career at Krasnoyarsk Polytechnic Institute began in 1974, progressing from junior researcher to full professor by 2002. Professor Kodnyanko earned his Ph.D. in 1983 from the Research Institute of Mechanical Engineering, Moscow, and his Doctorate in Technical Sciences in 2005 from Krasnoyarsk State Technical University. His research focuses on rapid mathematical modeling and the development of gas-static and hydrostatic bearings, leading to 186 publications, including six monographs, and 39 patents. He has been recognized with multiple honors, such as the honorary title of professor at KSTU in 2001 and an honorary diploma from the Russian Union of Industrialists and Entrepreneurs in 2011. In 2015, he joined the joint dissertation council at SFU and the Institute of Mathematical Modeling SB RAS.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Professor Vladimir Kodnyanko was born on October 26, 1951, in Podtiosovo, Krasnoyarsk Territory. He pursued higher education at Krasnoyarsk State University, earning a degree in Mathematics in 1974. His academic journey continued with postgraduate studies, leading to a Ph.D. in 1983 from the Research Institute of Mechanical Engineering, Moscow. Demonstrating his commitment to scientific advancement, he obtained his Doctorate in Technical Sciences in 2005 from Krasnoyarsk State Technical University. Throughout his educational journey, Professor Kodnyanko developed a strong foundation in mathematical modeling and engineering applications, which later became central to his research. His expertise in applied mathematics and mechanical engineering has greatly contributed to his innovative approaches in the field of gas-static and hydrostatic bearings. His educational achievements laid the groundwork for a distinguished career in academia, research, and technological development, positioning him as a leading expert in standardization, metrology, and quality management.

Professional Experience

Professor Vladimir Kodnyanko’s professional career spans several decades, beginning in 1974 when he joined Krasnoyarsk Polytechnic Institute as a junior researcher. Over the years, he steadily advanced through academic ranks, serving as an assistant, associate professor, and eventually earning the title of full professor in 2002. His expertise and contributions led him to the Polytechnic Institute of Siberian Federal University, where he currently serves as a professor in the Department of Standardization, Metrology, and Quality Management. His career is marked by active participation in academic councils and professional organizations, including his role in the joint dissertation council at SFU and the Institute of Mathematical Modeling SB RAS. Professor Kodnyanko has also been instrumental in mentoring young researchers, supervising doctoral students, and leading research projects in applied mathematics and engineering. His dedication to academia has significantly influenced the development of precision engineering and mathematical modeling techniques.

Research Interest

Professor Vladimir Kodnyanko’s research focuses on rapid mathematical modeling, with a particular emphasis on gas-static and hydrostatic bearings. His work integrates applied mathematics and engineering principles to enhance the efficiency and performance of high-precision mechanical systems. His studies explore the dynamics of fluid lubrication, optimization of bearing structures, and the application of mathematical models to predict system behavior under various operating conditions. His research has practical applications in aerospace, automotive, and industrial machinery, where high-performance bearings are critical for operational reliability. Professor Kodnyanko has authored 186 scientific publications, including six monographs, and holds 39 patents related to his innovations in mechanical engineering. His pioneering work has contributed significantly to advancing the field of tribology, improving the design and functionality of precision bearings used in various industries. Through his research, he continues to bridge the gap between theoretical mathematics and practical engineering applications.

Awards and Honors

Throughout his distinguished career, Professor Vladimir Kodnyanko has received numerous awards and honors recognizing his contributions to science and engineering. In 2001, he was awarded the honorary title of professor at Krasnoyarsk State Technical University in acknowledgment of his academic and research achievements. His dedication to advancing mathematical modeling and mechanical engineering earned him an honorary diploma from the Russian Union of Industrialists and Entrepreneurs in 2011. His contributions to the field of precision engineering and bearing technology have positioned him as a leading expert in his domain. In addition to institutional honors, he has been actively involved in national and international scientific communities, further solidifying his influence in engineering research. His recognition extends beyond academia, as his work has practical industrial applications that have improved the efficiency and reliability of mechanical systems. His awards reflect his lasting impact on science, engineering, and technological innovation.

Conclusion

Professor Vladimir Kodnyanko’s career exemplifies dedication to research, education, and technological advancement. With a strong foundation in mathematics and engineering, he has made groundbreaking contributions to rapid mathematical modeling and the development of gas-static and hydrostatic bearings. His extensive body of work, including 186 scientific publications and 39 patents, showcases his influence in precision engineering. As a professor at the Polytechnic Institute of Siberian Federal University, he continues to shape the next generation of researchers and engineers. His leadership in academic councils, research institutions, and industrial collaborations highlights his commitment to advancing scientific knowledge and engineering applications. Recognized with multiple prestigious awards, he remains a respected authority in his field. Through his research, mentorship, and professional contributions, Professor Kodnyanko has left an indelible mark on applied mathematics and mechanical engineering, inspiring future innovations in the field.

Publications Top Noted

  • Title: Theoretical Study of the Static and Dynamic Characteristics of a Slotted Adaptive Hydrostatic Thrust Bearing with a Regulator of the Lubricant Output Flow
    Authors: V.A. Kodnyanko, A.S. Kurzakov, A.V. Surovtsev, S. Belyakova, L. Gogol
    Year: 2022
    Citations: 1
    Source: Mathematics

  • Title: Theoretical Study on Compliance and Stability of Active Gas-Static Journal Bearing with Output Flow Rate Restriction and Damping Chambers
    Authors: V.A. Kodnyanko, A.S. Kurzakov, O. Grigorieva, A.V. Surovtsev, L.V. Strok
    Year: 2021
    Citations: Not specified
    Source: Lubricants

  • Title: Theoretical Study on Dynamics Quality of Aerostatic Thrust Bearing with External Combined Throttling
    Authors: V.A. Kodnyanko, S.N. Shatokhin
    Year: 2020
    Citations: 21
    Source: FME Transactions 48 (2)

  • Title: Mathematical Modeling on Statics and Dynamics of Aerostatic Thrust Bearing with External Combined Throttling and Elastic Orifice Fluid Flow Regulation
    Authors: V. Kodnyanko, S. Shatokhin, A. Kurzakov, Y. Pikalov
    Year: 2020
    Citations: 16
    Source: Lubricants 8 (5), 57

  • Title: Method for Calculating the Static Characteristics of Radial Hydrostatic Compensator of Machine Tool Bearings Deformation
    Authors: V.A. Kodnyanko
    Year: 2021
    Citations: 4
    Source: Periodica Polytechnica Transportation Engineering 49 (2), 114-119

  • Title: Compliance of Gas-Dynamic Bearing with Elastic Compensator of Movement
    Authors: V.A. Kodnyanko, A.S. Kurzakov
    Year: 2017
    Citations: 3
    Source: Journal of Siberian Federal University. Engineering & Technologies 10 (5), 657

  • Title: Directional Splines for Economic Analytics
    Authors: V. Kodnyanko
    Year: 2020
    Citations: 2
    Source: Economic Computation & Economic Cybernetics Studies & Research 54 (3)

  • Title: On Computational Redundancy of the Dichotomous Search and Conditional Minimization of Unimodal Functions by the Economical Dichotomous Search
    Authors: V.A. Kodnyanko
    Year: 2019
    Citations: 2
    Source: Sistemy i Sredstva Informatiki [Systems and Means of Informatics] 29 (1)

  • Title: Stability of Energy-Saving Adaptive Journal Hydrostatic Bearing with a Restriction of the Output Lubricant Stream
    Authors: V.A. Kodnyanko
    Year: 2012
    Citations: 2
    Source: Engineering & Technologies 4 (6), 674-684

 

Abdelhalim Ebaid | Applied Mathematics | Best Researcher Award

Prof. Abdelhalim Ebaid | Applied Mathematics | Best Researcher Award

Professor at University of Tabuk, Saudi Arabia

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician specializing in applied mathematics and mathematical modeling. He earned his M.Sc. and Ph.D. from Ain Shams University, Egypt, and currently serves as a Professor at the University of Tabuk, Saudi Arabia. With an extensive research portfolio, he has made significant contributions to fluid mechanics, differential equations, and numerical analysis, publishing over 50 papers in high-impact journals. His work is highly recognized, with an h-index of 30 on Google Scholar and 26 on Scopus, reflecting the substantial impact of his research. He serves on the editorial boards of several prestigious journals, including Heliyon and Advances in Mechanical Engineering. His expertise spans exact solutions, nanofluid dynamics, and peristaltic transport, making him a leading figure in his field. Through his research, mentorship, and editorial contributions, Prof. Ebaid continues to advance mathematical sciences and inspire the next generation of researchers.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Prof. Dr. Abdelhalim Ebaid holds both a Master of Science (M.Sc.) and a Doctor of Philosophy (Ph.D.) in Mathematics from Ain Shams University, Cairo, Egypt. He earned his M.Sc. degree in September 2003, followed by his Ph.D. in September 2007. His academic journey has been marked by a strong foundation in applied mathematics, differential equations, and mathematical modeling, which have significantly contributed to his extensive research portfolio. With a deep commitment to advancing mathematical sciences, Dr. Ebaid has developed expertise in fluid mechanics, nonlinear analysis, and computational methods. His rigorous academic training and research pursuits have positioned him as a leading figure in his field, allowing him to make substantial contributions to both theoretical and applied aspects of mathematics. His education has been instrumental in shaping his distinguished career as a professor and researcher, further enriching the scientific community through his scholarly work and mentorship.

Professional Experience

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician with extensive academic and research experience. He began his career as an Assistant Professor at the University of Tabuk, Saudi Arabia, in 2008, where he contributed significantly to mathematical research and education. In 2013, he was promoted to Associate Professor, further advancing his expertise in applied mathematics, differential equations, and mathematical modeling. His dedication and scholarly contributions earned him the position of Professor in 2020, solidifying his reputation as a leading researcher in his field. Throughout his career, Prof. Ebaid has actively participated in editorial boards of esteemed international journals, reflecting his commitment to the academic community. His prolific research output, including numerous publications in high-impact journals, has made significant contributions to mathematical sciences, particularly in fluid mechanics, nanofluid dynamics, and nonlinear differential equations. His work continues to influence and inspire researchers and students worldwide.

Research Interest

Prof. Dr. Abdelhalim Ebaid’s research interests span a broad spectrum of applied mathematics, mathematical modeling, and computational methods with applications in fluid mechanics, nanofluids, and nonlinear differential equations. His work extensively focuses on peristaltic transport, magnetohydrodynamics (MHD), and the influence of boundary conditions on fluid flow in various physical and biological systems. He has contributed significantly to solving nonlinear boundary value problems using analytical and numerical techniques, such as the Adomian decomposition method, differential transformation method, and Exp-function method. His studies also explore exact and approximate solutions for nonlinear oscillators, fractional calculus models, and their applications in mechanics and physics. Additionally, he investigates heat transfer enhancement using nanofluids, improving energy efficiency in thermal systems. As an active researcher, he aims to develop innovative computational tools and mathematical formulations to address complex real-world problems in engineering, physics, and biomedical sciences.

Award and Honor

Prof. Dr. Abdelhalim Ebaid has been recognized for his outstanding contributions to the field of mathematics, particularly in applied mathematics and mathematical modeling. His extensive research in fluid mechanics, nonlinear differential equations, and nanofluids has earned him international recognition. As a distinguished professor at the University of Tabuk, Saudi Arabia, he has published numerous high-impact research papers in esteemed journals and has been cited extensively, reflecting his influence in the academic community. He serves on the editorial boards of several prestigious journals, including Heliyon (Elsevier) and Advances in Mechanical Engineering (SAGE), further highlighting his leadership in mathematical research. His achievements include a remarkable h-index on both Scopus and Google Scholar, demonstrating the significance of his scholarly work. Through his innovative research and dedication to advancing mathematical sciences, Prof. Dr. Ebaid has made lasting contributions that continue to inspire researchers and academicians worldwide.

Conclusion

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician with a prolific research record in applied mathematics, mathematical modeling, and computational methods. His extensive contributions, including numerous high-impact publications and editorial roles in reputed journals, reflect his expertise and influence in the field. With an impressive citation count and h-index, his research has made a significant impact on the global scientific community. His work spans diverse areas, including fluid mechanics, differential equations, and nanofluid dynamics, showcasing his versatility and depth of knowledge. As a professor at the University of Tabuk, he has demonstrated strong leadership and commitment to advancing mathematical sciences. While his achievements are remarkable, further engagement in interdisciplinary collaborations and mentorship initiatives could enhance his impact even further. Given his outstanding research credentials and scholarly contributions, Prof. Dr. Ebaid is a highly deserving candidate for the Best Researcher Award, embodying excellence and innovation in mathematical research.

Publications Top Noted