Sedaghat Shahmorad Moghanlou | Applied Mathematics | Best Researcher Award

Prof. Sedaghat Shahmorad Moghanlou | Applied Mathematics | Best Researcher Award

Applied Math. Department at University of Tabriz, Iran

Prof. Sedaghat Shahmorad ๐ŸŽ“, a distinguished scholar in Applied Mathematics at the University of Tabriz ๐Ÿ‡ฎ๐Ÿ‡ท, specializes in numerical analysis, particularly integro-differential equations. With over two decades of academic experience ๐Ÿง , he has significantly contributed to the field through extensive teaching, research, and leadership. He has supervised numerous M.Sc. and Ph.D. theses ๐ŸŽ“๐Ÿ“š and authored multiple scholarly books and impactful journal articles ๐Ÿ“–๐Ÿ“. His work on the Tau method and approximation techniques has earned recognition in computational mathematics ๐Ÿงฎ. As Head of the Applied Mathematics Department and former Dean, he has demonstrated strong administrative and academic leadership ๐Ÿ‘จโ€๐Ÿซ๐Ÿ“Š. Prof. Shahmoradโ€™s dedication to advancing numerical methods and mentoring future mathematicians makes him a highly deserving candidate for the Best Researcher Award ๐Ÿ†๐Ÿ”ฌ.

Professional Profileย 

Education ๐ŸŽ“๐Ÿ“˜

Prof. Sedaghat Shahmorad earned his B.Sc. in Applied Mathematics from the University of Tabriz ๐Ÿ‡ฎ๐Ÿ‡ท, followed by an M.Sc. and Ph.D. in Numerical Analysis from the same institution. His academic journey has been marked by excellence in mathematical modeling and computational theory ๐Ÿ“Š. With a solid foundation in numerical methods and integro-differential equations, he developed deep expertise in solving complex mathematical problems ๐Ÿ’ก. Throughout his academic training, Prof. Shahmorad received high honors, standing out for his analytical acumen and innovation ๐Ÿง . His commitment to lifelong learning and scholarly development has shaped a distinguished academic and research career, reinforcing his role as a leading expert in numerical mathematics ๐Ÿ“๐Ÿ”.

Professional Experience ๐Ÿ‘จโ€๐Ÿซ๐Ÿข

Prof. Shahmorad brings over two decades of academic and leadership experience in Applied Mathematics at the University of Tabriz ๐ŸŽ“. He has served as the Head of the Department of Applied Mathematics and formerly as the Dean of the Faculty of Mathematical Sciences ๐Ÿ›๏ธ. In addition to his teaching duties, he has led multiple research projects, supervised numerous postgraduate students, and contributed to curriculum development ๐Ÿ“š. His strong leadership and mentorship have made a lasting impact on the academic community ๐Ÿ‘ฅ. He has also participated in editorial boards, conferences, and international collaborations ๐ŸŒ. His professional trajectory reflects his deep commitment to both teaching and research excellence, making him a vital contributor to the advancement of numerical mathematics ๐Ÿ”ฌ๐Ÿ“ˆ.

Research Interest ๐Ÿ”๐Ÿ“

Prof. Shahmoradโ€™s research focuses on numerical analysis, especially the development of efficient methods for solving integro-differential and delay differential equations ๐Ÿ”ข. He is renowned for his work on Tau methods, spectral techniques, and high-order approximation algorithms, which have broad applications in engineering, physics, and applied sciences โš™๏ธ๐ŸŒŒ. His studies aim to bridge theoretical rigor with computational feasibility, providing tools for real-world problem-solving ๐Ÿ’ป๐Ÿ“Š. He also explores fractional calculus, integral transforms, and mathematical modeling of dynamic systems. His interdisciplinary research contributes significantly to advancing both applied and pure mathematical domains ๐Ÿ“˜๐Ÿงช. Prof. Shahmoradโ€™s innovative methodologies continue to influence emerging trends in computational mathematics and inspire the next generation of researchers around the globe ๐ŸŒ.

Award and Honor ๐Ÿ†๐ŸŽ–๏ธ

Prof. Sedaghat Shahmorad has received multiple awards and honors recognizing his academic excellence, innovative research, and outstanding mentorship ๐Ÿ…๐Ÿ“š. Notably, he has been acknowledged as a Top Researcher at the University of Tabriz and by national science organizations in Iran ๐Ÿ‡ฎ๐Ÿ‡ท. His contributions to numerical mathematics, especially in solving integro-differential equations, have earned accolades from peer-reviewed journals and international conference bodies ๐Ÿงพ๐ŸŒŸ. He has also received honors for excellence in teaching and student supervision, highlighting his role as a mentor par excellence ๐Ÿ‘จโ€๐Ÿซ๐ŸŒฑ. These awards are a testament to his impactful research output, dedication to knowledge dissemination, and continued service to the academic community ๐ŸŽ“๐Ÿง .

Research Skill ๐Ÿง ๐Ÿ’ป

Prof. Shahmorad possesses advanced skills in mathematical modeling, numerical simulations, and algorithm development. He is proficient in implementing spectral and collocation methods, particularly the Tau method, to tackle complex integro-differential systems with precision ๐Ÿ”ข๐Ÿ“ˆ. His expertise extends to fractional differential equations, delay systems, and applied analysis using computational tools like MATLAB and Mathematica ๐Ÿ–ฅ๏ธโš™๏ธ. With a strong command over linear algebra, integral transforms, and functional analysis, he develops robust algorithms that are widely cited and applied in science and engineering ๐Ÿ”๐Ÿ“š. His problem-solving approach blends theoretical insight with computational strategy, fostering innovation and practical applications in numerical mathematics ๐Ÿ“˜๐Ÿš€.

Publications Top Note ๐Ÿ“

  • Title: Solving a class of auto-convolution Volterra integral equations via differential transform method
    Authors: Sedaghat Shahmorad, et al.
    Year: 2025
    Source: Journal of Mathematical Modeling

  • Title: Approximate solution of multi-term fractional differential equations via a block-by-block method
    Authors: Sedaghat Shahmorad, et al.
    Year: 2025
    Citations: 1
    Source: Journal of Computational and Applied Mathematics

  • Title: Convergence analysis of Jacobi spectral tau-collocation method in solving a system of weakly singular Volterra integral equations
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Citations: 1
    Source: Mathematics and Computers in Simulation

  • Title: Theoretical and numerical analysis of a first-kind linear Volterra functional integral equation with weakly singular kernel and vanishing delay
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Citations: 1
    Source: Numerical Algorithms

  • Title: Double weakly singular kernels in stochastic Volterra integral equations with application to the rough Heston model
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Source: Applied Mathematics and Computation

  • Title: Existence, uniqueness and blow-up of solutions for generalized auto-convolution Volterra integral equations
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Source: Applied Mathematics and Computation

  • Title: The application of fuzzy transform method to the initial value problems of linear differentialโ€“algebraic equations
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Source: Mathematical Sciences

  • Title: Solving fractional differential equations using cubic Hermit spline functions
    Authors: Sedaghat Shahmorad, et al.
    Year: 2024
    Source: Filomat (Open Access)

  • Title: Solving 2D-integro-differential problems with nonlocal boundary conditions via a matrix formulated approach
    Authors: Sedaghat Shahmorad, et al.
    Year: 2023
    Citations: 1
    Source: Mathematics and Computers in Simulation

  • Title: Review of recursive and operational approaches of the Tau method with a new extension
    Authors: Sedaghat Shahmorad, et al.
    Year: 2023
    Source: Computational and Applied Mathematics

Conclusion โœจ๐Ÿ“œ

Prof. Sedaghat Shahmorad stands as a prominent figure in numerical analysis, combining deep theoretical knowledge with computational expertise ๐ŸŒ๐Ÿ“Š. His dedication to teaching, mentoring, and advancing numerical methodologies has significantly shaped the field and inspired scholars across disciplines ๐Ÿง ๐ŸŽ“. With a rich portfolio of research, leadership roles, and academic honors, he exemplifies excellence in mathematics and its real-world applications ๐Ÿงพ๐Ÿ…. His work not only contributes to scientific understanding but also provides tools for innovation across technology and engineering sectors ๐Ÿงฌโš™๏ธ. As a visionary academic and skilled researcher, Prof. Shahmorad continues to influence future directions in computational and applied mathematics with distinction ๐ŸŒŸ๐Ÿ“˜.

Misha Urooj Khan | Applied Mathematics | Best Researcher Award

Prof. Misha Urooj Khan | Applied Mathematics | Best Researcher Award

AM (Tech) at CERN, Pakistan

Prof. Misha Urooj Khan is an accomplished electronics engineer and researcher whose multifaceted expertise spans embedded systems, quantum computing, AI/ML, and cybersecurity. ๐ŸŽ“ With a masterโ€™s degree focused on FPGA-based real-time SLAM and extensive experience at CERN, NCP, COMSATS, and UET, she has authored 10 journal papers, 17 conference articles, and earned 658 citations. ๐Ÿ’ก Her work includes groundbreaking innovations like drone-resistant cryptography, AI-driven healthcare devices (USteth, ThalaScreen), and predictive analytics for disaster management. ๐Ÿ›ฐ๏ธ As an inventor on a patented drone-detection system and mentor to numerous interns and students across global institutions, she demonstrates strong leadership and social impact. ๐ŸŒ Recognized with awards and competitive startup funding, Prof. Khanโ€™s strategic vision and interdisciplinary contributions make her a standout candidate for the Best Researcher Award. ๐Ÿ†

Professional Profile

๐Ÿ“š Education

Professor Misha Urooj Khan holds a Masterโ€™s degree in Electronics Engineering from the University of Engineering & Technology Taxila (2019โ€“2022), specializing in real-time FPGA-based Simultaneous Localization and Mapping (SLAM). She earned her B.Sc. in Electronics Engineering (2015โ€“2019) from the same institution, focusing on embedded systems, FPGA design, and neural networks, and implemented an automatic wheezing detection system for her thesis. With a solid grounding in both hardware and software design, she developed strong analytical and technical skills in digital design, signal processing, and machine learning. Her rigorous academic training laid the foundation for her multidisciplinary research career, enabling seamless integration of theory and application across quantum computing, AI-enhanced embedded systems, cyberโ€‘physical systems, and robotics. These educational credentials articulate her commitment to innovation and technology-driven problem solving.

๐Ÿ’ผ Professional Experience

Professor Khanโ€™s career spans internationally recognized institutions such as CERN, NCP, COMSATS, UET, and King Fahd University. As a Software Developer for CERNโ€™s CMS experiment (2024โ€“2025), she developed database schemas, business logic, and automated migrations, contributing to high-performance scientific computing environments. At Open Quantum Initiative and NCP (2023โ€“2026), she implemented quantum machine learning, error mitigation techniques, sensor-fusion robotics, and AI-driven predictive systems. Her research at COMSATS (2022) focused on intelligent UAV detection using edge devices. Earlier roles included designing biomedical signal-processing systems and embedded real-time detection boards (UET Taxila, 2018โ€“2022). Recently, at King Fahd University, sheโ€™s spearheading lightweight, quantum-resistant cybersecurity protocols for drones. Across each role, she has demonstrated exceptional technical proficiency, leadership in mentoring interns, and impactful contributions to system deployment, publication, and product innovation.

๐Ÿ”ฌ Research Interests

Professor Khanโ€™s research spans quantum computing, artificial intelligence, embedded systems, and cybersecurityโ€”integrating these domains to solve complex real-world problems. Within quantum computing, she investigates noise modeling, error mitigation, quantum machine learning (QSVM, QNN, VQC), and oracleโ€‘based functions on IBM quantum processors. Her AI/ML projects include domain-generalized image translation frameworks like R2TGenNet and T2RGenNet, predictive faultโ€‘diagnosis for rotary equipment, YOLO-based object detection, and AIโ€‘enhanced decision support. In embedded systems, she specializes in FPGAโ€‘based SLAM, realโ€‘time sensor fusion (LiDAR, RGB/depth cameras, IMU), and custom hardware for biomedical signal acquisition. Her current interest lies in quantumโ€‘resistant cryptographic protocols tailored for UAV communication systems. She is passionate about bridging quantumโ€‘AI with cybersecurity to enable secure, intelligent, and autonomous applications across healthcare, robotics, disaster response, and aerospace.

๐Ÿ… Awards and Honors

Professor Khan has earned recognition across academia, innovation, and professional excellence. She holds 658 citations (2025) and was awarded 2nd place for her presentation on โ€œNoise Modeling and Error Mitigation on Quantum Computersโ€ at ICTP Trieste, March 2024. Other distinctions include runner-up in the PMNIA startup pitching (June 2023), Best Presenter shields at IBCASTโ€™23 and IEECโ€™21, and funding awards for USteth and ThalaScreen prototypes (2022). Her startup PAKโ€‘AeroSafe qualified at regional and national levels and achieved runner-up status at Hackathon’23 (February 2023). Academic engagement includes first positions in university fairs (2019), community science awards since 2012, and multiple national scholastic honors. These accolades highlight her consistent excellence in research, presentation, innovation, and community engagement.

๐Ÿ› ๏ธ Research Skills

Professor Khan possesses a versatile and comprehensive set of skills across computing, hardware design, and data science. She is adept in FPGA/embedded system design (Verilog/VHDL), realโ€‘time algorithm development, and robotics navigation with ROS and Jetson hardware. Her ML proficiency spans classic and deep learning (SVM, KNN, RF, YOLOv5-v11, VGG16/19, GANs, Autoencoder), and she designs bespoke frameworks (R2TGenNet, T2RGenNet). In quantum research, she handles noise modeling, quantum gate design, error mitigation, oracle functions, and algorithm implementation on IBM quantum simulators and hardware. She also excels in sensor fusion (LiDAR/IMU/RGB/Depth), GUI creation, digital signal processing, and AI-based healthcare tools. Her programming languages include Python, Qiskit, MATLAB, and Linux-based deployment, complemented by strong skills in mentoring, proposal writing, and cross-disciplinary collaboration.

Publications Top Notes ๐Ÿ“

  • Title: A comparative survey of lidar-slam and lidar based sensor technologies
    Authors: MU Khan, SAA Zaidi, A Ishtiaq, SUR Bukhari, S Samer, A Farman
    Year: 2021
    Citations: 156
    Source: Mohammad Ali Jinnah University International Conference on Computing

  • Title: Artificial neural network-based cardiovascular disease prediction using spectral features
    Authors: MU Khan, S Samer, MD Alshehri, NK Baloch, H Khan, F Hussain, SW Kim, et al.
    Year: 2022
    Citations: 39
    Source: Computers and Electrical Engineering 101, Article 108094

  • Title: Classification of eye diseases and detection of cataract using digital fundus imaging (DFI) and inception-V4 deep learning model
    Authors: A Raza, MU Khan, Z Saeed, S Samer, A Mobeen, A Samer
    Year: 2021
    Citations: 34
    Source: 2021 International Conference on Frontiers of Information Technology (FIT)

  • Title: Safespace mfnet: Precise and efficient multifeature drone detection network
    Authors: MU Khan, M Dil, MZ Alam, FA Orakazi, AM Almasoud, Z Kaleem, C Yuen
    Year: 2023
    Citations: 33
    Source: IEEE Transactions on Vehicular Technology 73(3), 3106-3118

  • Title: Spectral analysis of lung sounds for classification of asthma and pneumonia wheezing
    Authors: SZH Naqvi, M Arooj, S Aziz, MU Khan, MA Choudhary
    Year: 2020
    Citations: 31
    Source: 2020 International Conference on Electrical, Communication, and Computer

  • Title: Supervised machine learning based fast hand gesture recognition and classification using electromyography (EMG) signals
    Authors: MU Khan, H Khan, M Muneeb, Z Abbasi, UB Abbasi, NK Baloch
    Year: 2021
    Citations: 29
    Source: 2021 International Conference on Applied and Engineering Mathematics (ICAEM)

  • Title: A review of system on chip (SoC) applications in Internet of Things (IoT) and medical
    Authors: A Ishtiaq, MU Khan, SZ Ali, K Habib, S Samer, E Hafeez
    Year: 2021
    Citations: 28
    Source: ICAME21, International Conference on Advances in Mechanical Engineering

  • Title: Identification of leaf diseases in potato crop using Deep Convolutional Neural Networks (DCNNs)
    Authors: Z Saeed, MU Khan, A Raza, N Sajjad, S Naz, A Salal
    Year: 2021
    Citations: 23
    Source: 16th International Conference on Emerging Technologies (ICET)

  • Title: Classification of Multi-Class Cardiovascular Disorders using Ensemble Classifier and Impulsive Domain Analysis
    Authors: MU Khan, SZZ Ali, A Ishtiaq, K Habib, T Gul, A Samer
    Year: 2021
    Citations: 22
    Source: Mohammad Ali Jinnah University International Conference on Computing

  • Title: Automated system design for classification of chronic lung viruses using non-linear dynamic system features and k-nearest neighbour
    Authors: MU Khan, A Farman, AU Rehman, N Israr, MZH Ali, ZA Gulshan
    Year: 2021
    Citations: 22
    Source: Mohammad Ali Jinnah University International Conference on Computing

  • Title: Embedded system design for real-time detection of asthmatic diseases using lung sounds in cepstral domain
    Authors: MU Khan, A Mobeen, S Samer, A Samer
    Year: 2021
    Citations: 22
    Source: 6th International Electrical Engineering Conference (IEEC)

  • Title: Stability enhancement of commercial Boeing aircraft with integration of PID controller
    Authors: AU Rehman, MU Khan, MZH Ali, MS Shah, MF Ullah, M Ayub
    Year: 2021
    Citations: 21
    Source: 2021 International Conference on Applied and Engineering Mathematics (ICAEM)

  • Title: Classification of pulmonary viruses X-ray and detection of COVID-19 based on invariant of inception-V3 deep learning model
    Authors: Z Saeed, MU Khan, A Raza, H Khan, J Javed, A Arshad
    Year: 2021
    Citations: 19
    Source: 2021 International Conference on Computing, Electronic and Electrical

  • Title: Classification of phonocardiography based heart auscultations while listening to Tilawat-e-Quran and music using vibrational mode decomposition
    Authors: MU Khan, S Samer, A Samer, A Mobeen, A Arshad, H Khan
    Year: 2021
    Citations: 18
    Source: 2021 International Conference on Applied and Engineering Mathematics (ICAEM)

  • Title: MSF-GhostNet: Computationally-Efficient YOLO for Detecting Drones in Low-Light Conditions
    Authors: M Misbah, MU Khan, Z Kaleem, A Muqaibel, MZ Alam, R Liu, C Yuen
    Year: 2024
    Citations: 5
    Source: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

  • Title: Multi-Sensor Fusion for Remote Sensing of Metallic and Non-metallic Object Classification in Complex Soil Environments and at Different Depths
    Authors: MU Khan, MA Kamran, WR Khan, MM Ibrahim, MU Ali, SW Lee
    Year: 2024
    Citations: 5
    Source: IEEE Transactions on Geoscience and Remote Sensing

  • Title: Mathematical Modelling and Implementation of 2DOF Standard, Parallel & Series PID Controllers
    Authors: AU Rehman, MU Khan, MT Rehman, W Shehzad, S Zaman, MW Khan
    Year: 2021
    Citations: 5
    Source: 6th International Multi-Topic ICT Conference (IMTIC)

  • Title: Diabetes Prediction Using an Optimized Variational Quantum Classifier
    Authors: WR Khan, MA Kamran, MU Khan, MM Ibrahim, KS Kim, MU Ali
    Year: 2025
    Citations: 4
    Source: International Journal of Intelligent Systems 2025 (1), Article 1351522

  • Title: Deep Learning Empowered Fast and Accurate Multiclass UAV Detection in Challenging Weather Conditions
    Authors: MU Khan, M Dil, M Misbah, FA Orakazi, MZ Alam, Z Kaleem
    Year: 2022
    Citations: 4
    Source: Conference Publication

  • Title: Brain Tumor Detection Based on Magnetic Resonance Imaging Analysis Using Segmentation, Thresholding and Morphological Operations
    Authors: MU Khan, H Khan, A Arshad, NK Baloch, A Shaheen, F Tariq
    Year: 2021
    Citations: 3
    Source: 6th International Multi-Topic ICT Conference (IMTIC)

  • Title: SMSAT: A Multimodal Acoustic Dataset and Deep Contrastive Learning Framework for Affective and Physiological Modeling of Spiritual Meditation
    Authors: A Suleman, Y Alkhrijah, MU Khan, H Khan, MAHA Faiz, MA Alawad, et al.
    Year: 2025
    Source: arXiv preprint arXiv:2505.00839

  • Title: Migration of CADI to Fence
    Authors: M Imran, MU Khan, RMA Shad, A Samantas, A Pfeiffer, J Closier
    Year: 2025

โœ… Conclusion

Professor Misha Urooj Khan exemplifies a visionary researcher whose interdisciplinary breadth and leadership set her apart. With robust academic credentials, global professional experience at centers like CERN and NCP, and impactful publications and patents, she drives innovation in quantum-AI, embedded systems, robotics, and cybersecurity. Her product-oriented mindsetโ€”evident in startups like USteth and PAKโ€‘AeroSafeโ€”coupled with her mentoring of junior researchers, underscores both strategic vision and social impact. Her consistent accolades and scholarly presence (658 citations) affirm her research quality and influence. Combining groundbreaking technical achievements, real-world applications, and academic excellence, Professor Khan stands as a compelling candidate for top-tier research distinctions and awards.

Dipesh | Applied Mathematics | Best Researcher Award

Dr. Dipesh | Applied Mathematics | Best Researcher Award

Assistant Professor at SR University, India

Dr. Dipesh is a dynamic and visionary scholar ๐ŸŒŸ whose research bridges the frontiers of mathematics, engineering, and innovation. With a profound commitment to academic excellence ๐Ÿ“š, he has contributed significantly to applied mathematics and interdisciplinary modeling. His scholarly journey is marked by a trail of high-impact publications, collaborative projects, and a passion for advancing scientific knowledge through innovative methods ๐Ÿง ๐Ÿ”ฌ. Dr. Dipeshโ€™s work seamlessly integrates theory and application, addressing real-world challenges with mathematical precision. As a dedicated educator and researcher ๐Ÿ‘จโ€๐Ÿซ, he inspires students and peers alike, fostering a culture of curiosity and discovery. Known for his strategic thinking and problem-solving acumen ๐ŸŽฏ, he is a driving force in the global research community. His contributions not only elevate his field but also pave the way for future innovations in science and technology ๐ŸŒ. Dr. Dipesh embodies the spirit of intellectual rigor, innovation, and global impact. ๐Ÿš€

Professional Profileย 

Google Scholar
Scopus Profile
ORCID Profile

Education ๐ŸŽ“

Dr. Dipeshโ€™s academic voyage began with a thirst for discovery, leading him to earn top distinctions across his educational milestones. From undergraduate brilliance to postgraduate mastery, he consistently demonstrated scholarly agility. His doctoral pursuit was nothing short of transformative, delving deep into the realms of applied mathematics and computational modeling. With a blend of analytical sharpness and creative thought ๐Ÿ’ก, he shaped a thesis that resonated across disciplines. Through internships, fellowships, and global academic exposure ๐ŸŒ, Dr. Dipesh embraced both classical theory and cutting-edge advancements, enriching his intellectual toolkit. His academic record reflects not just excellence, but evolution โ€” an unrelenting quest for understanding the mathematical patterns that shape our world. With each degree, he built not just knowledge, but vision โ€” a vision that continues to inspire every academic and professional arena he enters.

Professional Experienceย 

With a career rooted in purpose and propelled by passion, Dr. Dipesh has crafted a vibrant professional canvas. From research institutions to academic think tanks, he has donned multiple hats โ€” as a lecturer, mentor, consultant, and principal investigator. His work echoes across domains like mathematical modeling, computational simulations, and interdisciplinary analytics ๐Ÿ”. Through strategic collaborations and leadership in diverse research initiatives, he has translated theory into impact. His roles have spanned curriculum development, peer review, and technological innovation, each enriching his expertise. Dr. Dipesh brings not just experience, but engagement โ€” an unwavering drive to uplift scientific inquiry and educational transformation ๐Ÿ“ˆ. Whether guiding students or steering complex projects, he embodies professionalism with a human touch. His journey is marked by meaningful milestones that reflect both depth and diversity โ€” a true blend of intellect and initiative in motion.

Research Interest ๐Ÿ”ฌ

Dr. Dipeshโ€™s research universe orbits around the fusion of abstract theory and practical relevance. He thrives at the intersection of applied mathematics, machine learning, data-driven modeling, and real-world system optimization ๐ŸŒ. Passionate about unraveling complex dynamics, his work ventures into fractional calculus, differential equations, computational intelligence, and interdisciplinary simulations. Dr. Dipesh views research as a living organism โ€” evolving, adapting, and contributing to the scientific ecosystem. His investigations are not limited to academic curiosity; they aim to decode pressing global issues using mathematical clarity and innovation ๐Ÿง . From predictive algorithms to mathematical physics, he embraces complexity with elegance. A firm believer in cross-domain synergy, his inquiries often collaborate with fields like biology, environmental science, and artificial intelligence ๐Ÿค. Driven by both rigor and relevance, his research is a beacon for transformative insight and sustainable innovation.

Awards and Honors ๐Ÿ†

Dr. Dipeshโ€™s accolades reflect his commitment to excellence and his pioneering spirit. Recognized both nationally and internationally, he has received honors that celebrate not just his research, but his contribution to education and societal advancement ๐ŸŒŸ. From best paper awards to research fellowships, he has built a distinguished legacy of merit. These recognitions stem from competitive platforms where innovation meets influence. Whether through academic forums, institutional commendations, or international conferences ๐ŸŒ, his work has earned applause and admiration. His awards are more than trophies โ€” they are testaments to his intellectual resilience, collaborative ethos, and trailblazing ideas. A mentor to many and a leader in thought, Dr. Dipeshโ€™s decorated career is a living narrative of perseverance, curiosity, and global contribution ๐Ÿ…. These honors reaffirm his role as a changemaker in the ever-expanding sphere of mathematical sciences.

Conclusion ๐Ÿงญ

Dr. Dipesh stands as a luminary whose path fuses intellect, imagination, and impact. His academic roots, professional ventures, and research brilliance have built a profile defined by depth and dynamism ๐ŸŒˆ. More than just a mathematician, he is a storyteller of systems, a bridge between theory and transformation. Every equation he solves and every model he constructs echoes his belief in knowledge as a catalyst for change. As a scholar, mentor, and visionary, he continues to shape minds and spark innovation across continents ๐Ÿ“šโœจ. Dr. Dipesh doesnโ€™t just follow the path โ€” he crafts it, inspiring future thinkers to ask bold questions and dream without limits. His legacy is not only found in published pages or professional positions, but in the lives he touches and the paradigms he shifts ๐Ÿ”„. He is a vibrant force โ€” ever-evolving, ever-inspiring, and ever-forward.

Publications Top Notes

  • ๐ŸŒฟ Effect of time delay on dynamic of plant competition under allelopathy
    Authors: P.K. Dipesh
    Year: 2022
    Citations: 11
    Source: Mathematical Methods in the Applied Sciences

  • ๐ŸŒฒ Optimizing industrial growth through alternative forest biomass resources: A mathematical model using DDE
    Authors: Dipesh, P. Kumar, C. Cattani
    Year: 2023
    Citations: 10
    Source: International Journal of Mathematics and Computer in Engineering

  • ๐ŸŒฑ Effect of time-lag on two mutually competing plant populations under allelochemicals
    Authors: P.K. Dipesh
    Year: 2022
    Citations: 10
    Source: Journal of Physics: Conference Series 2267 (1), 012019

  • ๐Ÿ”ฌ Enhancing high frequency magneto-dielectric performance with exchange-coupled garnet/spinel ferrite composites
    Authors: Dipesh, A. Sharma, H. Mahajan, N. Aggarwal, S. Sinha, A.K. Srivastava
    Year: 2023
    Citations: 6
    Source: Nano-Structures & Nano-Objects 36, 101035

  • ๐Ÿงช Investigating the impact of toxicity on plant growth dynamics through the zero of a fifth-degree exponential polynomial: A mathematical model using DDE
    Authors: Dipesh, P.K.
    Year: 2023
    Citations: 6
    Source: Chaos, Solitons & Fractals 171, 113457

  • ๐ŸŒพ Modelling the stimulatory and inhibitory allelopathic effects on competing plant populations
    Authors: Dipesh, P. Kumar
    Year: 2022
    Citations: 6
    Source: AIP Conference Proceedings 2435 (1)

  • ๐Ÿ“ˆ Modeling and analysis of demand-supply dynamics with a collectability factor using DDE in economic growth via the Caputo operator
    Authors: Dipesh, Q. Chen, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 5
    Source: AIMS Mathematics 9 (3), 7471โ€“7191

  • ๐ŸŒฟ Sensitivity and Directional Analysis of Two Mutually Competing Plant Population Under Allelopathy Using DDE
    Authors: Dipesh, P. Kumar
    Year: 2023
    Citations: 3
    Source: Mathematics and Computing, 605โ€“620

  • ๐ŸŒฑ Role of Delay on Two Competing Plant Populations Under the Allelopathic Effect
    Authors: Dipesh, P. Kumar
    Year: 2022
    Citations: 2
    Source: Emerging Advancements in Mathematical Sciences, 39โ€“58

  • ๐Ÿ’ฐ Stability Analysis of GDP-National Debt Dynamics using Delay Differential Equation
    Authors: Q. Chen, Dipesh, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 1
    Source: Fractals, 2540059

  • ๐ŸŒฟ A novel approach to 6th-order DDEs in toxic plant interactions and soil impact: beyond Newton-Raphson
    Authors: Dipesh, P. Kumar
    Year: 2024
    Citations: 1
    Source: Physica Scripta 99 (6), 065236

  • ๐Ÿงฒ Exchange-coupling enhanced: Tailoring structural and magnetic properties of Dy iron garnet ferrite nanoparticles via La substitution
    Authors: Dipesh, A. Sharma, P. Kumar, J.V. Vas, R. Medwal, A.K. Srivastava
    Year: 2024
    Citations: 1
    Source: Journal of Materials Research, 1โ€“18

  • ๐Ÿ“Š On the equilibrium point and Hopf-Bifurcation analysis of GDP-national debt dynamics under delayed investment: A new DDE model
    Authors: Dipesh, Q. Chen, P. Kumar, H.M. Baskonus
    Year: 2024
    Citations: 1
    Source: Alexandria Engineering Journal 91, 510โ€“515

  • ๐Ÿ” Unlocking the Potential of Garnet Ferrites: A Comprehensive Review on Properties, Preparation Methods, and Applications
    Authors: A. Sharma, Dipesh
    Year: 2024
    Citations: 1
    Source: Materials Performance and Characterization 13 (1), 1โ€“36

  • ๐Ÿ”‹ Status and Prospects of GdIG Garnet Ferrites for Energy Storage Devices: A Review
    Authors: A. Sharma, Dipesh, H. Mahajan, A.K. Srivastava
    Year: 2024
    Citations: 1
    Source: Next Generation Materials for Sustainable Engineering, 174โ€“186

  • ๐ŸŒฒ Delay DDE model of forest biomass and competition between woodโ€based and syntheticโ€based industries
    Authors: Dipesh, P. Kumar
    Year: 2023
    Citations: 1
    Source: Mathematical Methods in the Applied Sciences

  • ๐Ÿซ€ Modelling the Role of Delay in Blood Flow Dynamics in the Human Body using DDE
    Authors: Dipesh, P. Kumar
    Year: 2025
    Citations: โ€“
    Source: Physica A: Statistical Mechanics and its Applications, 130602

  • ๐Ÿ’น On modeling the impact of delay on stock pricing fluctuations using DDE
    Authors: Y. Wang, Dipesh, P. Kumar, H.M. Baskonus, W. Gao
    Year: 2025
    Citations: โ€“
    Source: Physica A: Statistical Mechanics and its Applications, 130601

  • ๐Ÿƒ Modeling and analyzing delay in plant responses under toxicity
    Authors: Dipesh, P. Kumar, H.M. Baskonus
    Year: 2025
    Citations: โ€“
    Source: Advances in Computational Methods and Modeling for Science and Engineering

  • ๐ŸŒฑ Effect of time delay on directional and stability analysis of plant competition for allelochemicals study
    Authors: Dipesh, P. Kumar, H.M. Baskonus, A. Ciancio
    Year: 2025
    Citations: โ€“
    Source: Advances in Computational Methods and Modeling for Science and Engineering

 

Boris Kryzhanovsky | Applied Mathematics | Best Researcher Award

Prof. Dr. Boris Kryzhanovsky | Applied Mathematics | Best Researcher Award

Chief researcher at Scientific Research Institute for System Analysis of the National Research Center โ€œKurchatov Instituteโ€, Russia

Dr. Boris Kryzhanovsky is a distinguished researcher with over five decades of experience in the fields of quantum electrodynamics, laser physics, and mathematical methods in neural networks, statistical physics, and nanotechnology. He graduated from Yerevan State University in 1971 and has since contributed significantly to scientific advancements. His work includes pioneering research in nonstationary four-wave mixing, the development of vector neural networks with large memory, and innovative methods for calculating partition functions of spin systems. Dr. Kryzhanovsky has published over 200 articles in renowned journals and holds an h-index of 19, reflecting the impact of his research. He is also the Editor-in-Chief of Optical Memory and Neural Networks and a Corresponding Member of the Russian Academy of Sciences. His leadership and extensive collaboration with international scientific communities further underscore his prominent role in advancing research in his fields of expertise.

Professional Profileย 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Boris Kryzhanovsky completed his education at Yerevan State University, Armenia, where he graduated from the Physical Department in 1971. His academic foundation laid the groundwork for a distinguished career in scientific research. Throughout his career, Dr. Kryzhanovsky has maintained a strong commitment to advancing his knowledge in complex scientific fields, particularly in quantum electrodynamics, laser physics, and mathematical methods applied to neural networks and statistical physics. His early training at one of Armeniaโ€™s most prestigious universities provided him with the critical thinking and theoretical skills that have shaped his extensive body of work in these areas.

Professional Experience

Dr. Kryzhanovskyโ€™s professional career spans over five decades, starting as a scientific researcher at the Institute for Physical Research in Armenia (1971-1991). He later worked at the Institute for Optical-Neuron Technologies RAS (1996-2006) and currently holds a chief researcher position at the Scientific Research Institute for System Analysis RAS. His career has seen significant contributions to the fields of neural networks and statistical physics, with leadership roles including Editor-in-Chief of Optical Memory and Neural Networks. Dr. Kryzhanovskyโ€™s work is widely recognized for its deep theoretical insights and practical applications in various scientific domains.

Research Interests

Dr. Kryzhanovskyโ€™s research interests are diverse, encompassing neural networks, statistical physics, and nanotechnology. He has made groundbreaking contributions in developing mathematical methods for the analysis of neural networks, especially focusing on vector neural networks with large memory for recognizing noisy patterns. Additionally, his work on the theory of nonstationary processes in quantum electrodynamics and the development of methods for calculating partition functions of spin systems highlights his interdisciplinary approach. His research also explores nanotechnology, particularly in relation to statistical mechanics, contributing to advances in both theoretical and applied physics.

Awards and Honors

Dr. Kryzhanovsky has received numerous honors throughout his career, underpinned by his significant contributions to scientific research. He is a Corresponding Member of the Russian Academy of Sciences and holds leadership positions in various academic and scientific societies. His work is frequently cited, reflected in his impressive h-index of 19 on Google Scholar, and he has authored over 200 journal articles in reputable SCI and Scopus-indexed publications. His professional standing and achievements are also evident from his role as Editor-in-Chief of Optical Memory and Neural Networks, further cementing his reputation in the scientific community.

Conclusion

Dr. Boris Kryzhanovsky is a highly respected researcher whose contributions to quantum electrodynamics, laser physics, neural networks, and statistical physics have had a profound impact on both theoretical and applied sciences. His academic background, coupled with extensive professional experience, has led to groundbreaking research that continues to shape the direction of several scientific fields. With a remarkable publication record and leadership roles within the scientific community, Dr. Kryzhanovsky remains a key figure in advancing knowledge and innovation. His achievements and dedication to research make him a standout in his field, deserving recognition for his substantial contributions to science.

Publications Top Noted

 

 

 

Sabah Kausar | Applied Mathematics | Young Scientist Award

Dr. Sabah Kausar | Applied Mathematics | Young Scientist Award

University of Gujrat, Pakistan

Dr. Sabah Kausar is a dedicated physicist and researcher specializing in nanomaterials, photocatalysis, and environmental sustainability. With an MPhil in Physics from the University of Gujrat, her research focuses on synthesizing and characterizing advanced nanocomposites for applications in water purification, antimicrobial treatments, and food preservation. She has expertise in XRD, SEM, FTIR, PL, UV-Vis spectroscopy, and EDX, demonstrating a strong technical background. Her publications on Ag-doped BiVOโ‚„ and BiVOโ‚„/ZnO nanocomposites highlight significant advancements in photocatalytic degradation and extended shelf life of fruits. Passionate about interdisciplinary research, Dr. Kausarโ€™s work bridges nanotechnology, environmental science, and material physics. She aspires to expand her contributions through international collaborations, high-impact publications, and practical industrial applications. With a keen focus on sustainability and innovation, she is a promising young scientist making impactful contributions to applied physics and nanotechnology.

Professional Profileย 

Education

Dr. Sabah Kausar holds an MPhil in Physics from the University of Gujrat, where she conducted pioneering research on nanomaterials and their photocatalytic and antimicrobial properties. Her thesis focused on the synthesis and characterization of BiVOโ‚„-based nanocomposites for enhancing the shelf life of fruits and environmental remediation. Prior to her MPhil, she earned a BS (Honors) in Physics, where she developed a strong foundation in experimental, numerical, and conceptual physics. Her academic journey has been marked by excellence in material physics, spectroscopy, and nanotechnology applications. Additionally, she is currently pursuing a Bachelor of Education (BEd), reinforcing her ability to contribute to academia. With a solid educational background, she has developed expertise in advanced characterization techniques such as XRD, SEM, FTIR, PL, and UV-Vis spectroscopy, which are essential for analyzing the structural, optical, and morphological properties of nanomaterials.

Professional Experience

Dr. Sabah Kausar is an emerging scientist with expertise in photocatalytic nanomaterials, environmental physics, and material characterization. During her MPhil research, she synthesized and tested Ag-doped BiVOโ‚„ and BiVOโ‚„/ZnO nanocomposites to improve photocatalytic activity and antimicrobial performance. Her research has practical implications in water purification, environmental remediation, and food preservation. She has collaborated with interdisciplinary teams to analyze nanoparticle efficiency using XRD, SEM, FTIR, and UV-Vis spectroscopy. She has also contributed to scientific literature through high-impact publications focusing on nanotechnology-based solutions for sustainability. As a physicist, she excels in team collaboration, research execution, and analytical problem-solving. Beyond research, her pursuit of a BEd degree equips her with academic and teaching skills, enhancing her ability to mentor and educate future scientists. With a passion for advancing nanomaterials for environmental and biomedical applications, she is poised to make significant contributions to applied physics and sustainable technology.

Research Interest

Dr. Sabah Kausarโ€™s research interests lie in nanotechnology, photocatalysis, environmental sustainability, and antimicrobial nanomaterials. She focuses on synthesizing and characterizing functional nanocomposites for applications in water purification, energy harvesting, and food preservation. Her expertise extends to advanced material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL), and UV-Vis analysis, which she employs to explore optical, structural, and chemical properties of materials. She is particularly interested in the development of eco-friendly nanomaterials to combat water pollution and food spoilage. Her work on TiOโ‚‚/BiVOโ‚„ nanocomposites for dye and antibiotic degradation has demonstrated significant potential for environmental applications. Additionally, she is keen on interdisciplinary research collaborations to bridge the gap between material science, environmental physics, and biomedicine. With a strong foundation in experimental physics and nanotechnology, she aspires to contribute to cutting-edge advancements in sustainable science and clean energy.

Awards and Honors

Dr. Sabah Kausar has earned recognition for her innovative contributions to nanotechnology and environmental sustainability. Her MPhil research on BiVOโ‚„-based nanomaterials has been widely acknowledged for its practical implications in photocatalysis, antimicrobial applications, and food preservation. She has presented her work at national and international awards, showcasing her expertise in material characterization and sustainable nanotechnology. Additionally, her high-impact publications in peer-reviewed journals reflect her strong research capabilities and commitment to scientific advancement. Her ability to bridge physics, chemistry, and environmental science has positioned her as a promising researcher. As she continues to develop innovative nanomaterials for real-world applications, she remains committed to academic excellence and collaborative research projects. With her growing contributions to scientific knowledge and sustainability-focused solutions, she is a strong candidate for Young Scientist Awards and similar recognitions in the fields of nanotechnology, applied physics, and environmental research.

Conclusion

Dr. Sabah Kausar is a rising physicist and nanotechnology researcher committed to solving environmental and sustainability challenges through innovative material science. With a strong academic background, hands-on research experience, and a passion for applied physics, she has contributed to the development of photocatalytic and antimicrobial nanomaterials. Her work has significant implications for clean energy, water purification, and food preservation, demonstrating the power of interdisciplinary scientific advancements. As a young scientist, she continues to explore new frontiers in nanotechnology, with a focus on sustainable applications. Her ability to integrate material characterization, experimental physics, and environmental research makes her a promising scientific leader. With continued collaborations, high-impact research, and academic contributions, she is well-positioned to make lasting contributions in physics, nanotechnology, and sustainability science.

Publications Top Noted

 

Sorin Vlase | Applied Mathematics | Excellence in Applied Mathematics

Prof. Sorin Vlase | Applied Mathematics | Excellence in Applied Mathematics

Professor at Transilvania University of Brasov, Romania

Prof. Sorin Vlase is a distinguished researcher and full professor at Transilvania University of Brasov, Romania, specializing in Mechanics, Computational Mechanics, Finite Element Method, and Multibody Systems. With an academic career spanning nearly five decades, he has made significant contributions to mechanical engineering and applied mathematics. He has served as the head of multiple departments, organized prestigious international awards, and led over 15 scientific projects while participating in more than 50. His extensive publication record includes 244 ISI-indexed papers, 21 books, and numerous award proceedings. He has played a key role in advancing computational mechanics, composite materials, and automotive engineering, securing national and international research grants, including NATO-funded projects. His expertise is recognized through his editorial contributions, scientific committee memberships, and honorary professor titles. Prof. Vlaseโ€™s work continues to impact the global research community, making him a strong candidate for recognition as a leading researcher in his field.

Professional Profileย 

Google Scholar
ORCID Profile

Education

Prof. Sorin Vlase has a strong academic background in mechanical engineering and applied mathematics. He earned his B.Sc. and M.Sc. in Mechanical Engineering with a specialization in Automotive Engineering from Transilvania University of Brasov (1971โ€“1976). In addition, he pursued a degree in mathematics from the University of Bucharest (1977โ€“1982), further strengthening his analytical expertise. He obtained his Ph.D. from Transilvania University of Brasov in 1989, focusing on advanced computational mechanics. His academic journey culminated in a Habilitation in Automotive Engineering in 2015, allowing him to mentor doctoral students. His multidisciplinary education has played a crucial role in shaping his expertise in mechanics, computational analysis, and finite element methods, making him a highly respected scholar in his field. Throughout his academic career, he has been associated with Transilvania University, significantly contributing to its research and educational framework through his teaching, mentorship, and leadership in various scientific projects.

Professional Experience

Prof. Vlase has had an extensive professional career, primarily at Transilvania University of Brasov, where he has been a faculty member since 1980. His career progression includes roles as an Assistant Professor (1980โ€“1984), Lecturer (1984โ€“1991), Associate Professor (1991โ€“1996), and Full Professor (1996โ€“present). He also served as the Head of the Department of Mechanics (2004โ€“2011), Head of the Department of Automotive Engineering and Mechanics (2011โ€“2012), and Head of the Department of Mechanical Engineering (2012โ€“2020). Prior to joining academia, he worked as a research engineer at the Automotive Research Institute and ROMAN SA Brasov (1976โ€“1980), gaining valuable industry experience. His expertise spans mechanical stability, numerical methods, kinematics, and dynamics of multibody systems. Additionally, he has organized numerous international awards and contributed to over 50 scientific projects, demonstrating his leadership and commitment to advancing mechanical engineering and applied sciences.

Research Interests

Prof. Vlaseโ€™s research is centered on Mechanics, Computational Mechanics, Finite Element Method, Vibrations, and Multibody Systems. His interdisciplinary approach integrates mathematical modeling, numerical simulations, and experimental mechanics, with applications in automotive engineering and composite materials. He has made significant contributions to computational analysis, particularly in the dynamic behavior of mechanical structures. His work also explores nonlinear analysis, virtual prototyping, and the optimization of mechanical systems. His research extends to white noise in urban environments and mechanical identifiability in automotive engineering, reflecting his ability to bridge theoretical research with real-world applications. His leadership in national and international research grants, including NATO-funded projects, underscores his influence in the field. Through his extensive publication record, including books, journal articles, and award proceedings, he continues to contribute to the development of cutting-edge technologies in engineering and applied mechanics.

Awards and Honors

Prof. Sorin Vlase has been widely recognized for his contributions to mechanical engineering and computational mechanics. He has received numerous accolades for his research, teaching, and leadership in the scientific community. He was awarded an Honorary Professorship at Ovidius University in Constanta, a testament to his influence in academia. He has served as an editor for 15 scientific publications and has been a key organizer of several prestigious international awards, including the Computational Mechanics and Virtual Engineering (COMEC) series and the Advanced Composite Materials Engineering (COMAT) awards. His research excellence has been acknowledged through multiple national and international grants, including NATO-sponsored projects. His role as a principal investigator in over 15 projects and a participant in more than 50 research initiatives further highlights his impact. Prof. Vlaseโ€™s commitment to advancing the field of mechanics has earned him a distinguished reputation in the global academic community.

Conclusion

Prof. Sorin Vlase is a highly accomplished researcher, educator, and leader in the fields of mechanics, computational analysis, and automotive engineering. His academic journey, spanning decades, has been marked by significant contributions to research, teaching, and scientific collaboration. With over 244 ISI-indexed papers, 21 books, and leadership in numerous research projects, he has left a lasting impact on engineering sciences. His interdisciplinary expertise, bridging mechanical engineering and applied mathematics, has led to innovative solutions in computational mechanics and material science. His role in organizing international awards and securing competitive research grants further underscores his dedication to advancing scientific knowledge. Recognized through prestigious awards and honorary titles, Prof. Vlase continues to shape the future of mechanical engineering. His extensive contributions make him a strong candidate for any distinguished research award, reflecting his outstanding achievements in academia, research, and professional service.

Publications Top Noted

  • Title: On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure
    Authors: M. Marin, S. Vlase, R. Ellahi, M.M. Bhatti
    Year: 2019
    Citations: 127
    Source: Symmetry, 11(7), 863

  • Title: Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system
    Authors: S. Vlase, M. Marin, A. ร–chsner, M.L. Scutaru
    Year: 2019
    Citations: 122
    Source: Continuum Mechanics and Thermodynamics, 31, 715-724

  • Title: Improved rigidity of composite circular plates through radial ribs
    Authors: C. Itu, A. ร–chsner, S. Vlase, M.I. Marin
    Year: 2019
    Citations: 115
    Source: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications

  • Title: New analytical method based on dynamic response of planar mechanical elastic systems
    Authors: M.L. Scutaru, S. Vlase, M. Marin, A. Modrea
    Year: 2020
    Citations: 113
    Source: Boundary Value Problems, 2020, 1-16

  • Title: A method for the study of the vibration of mechanical bars systems with symmetries
    Authors: S. Vlase, C. Nฤƒstac, M. Marin, M. Mihฤƒlcicฤƒ
    Year: 2017
    Citations: 107
    Source: Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering

  • Title: Considerations on double porosity structure for micropolar bodies
    Authors: M. Marin, S. Vlase, M. Paun
    Year: 2015
    Citations: 107
    Source: AIP Advances, 5(3)

  • Title: On mixed problem in thermoelasticity of type III for Cosserat media
    Authors: M. Marin, A. Seadawy, S. Vlase, A. Chirila
    Year: 2022
    Citations: 100
    Source: Journal of Taibah University for Science, 16(1), 1264-1274

  • Title: On the decay of exponential type for the solutions in a dipolar elastic body
    Authors: M. Marin, R. Ellahi, S. Vlase, M.M. Bhatti
    Year: 2020
    Citations: 95
    Source: Journal of Taibah University for Science, 14(1), 534-540

  • Title: Coupled transverse and torsional vibrations in a mechanical system with two identical beams
    Authors: S. Vlase, M. Marin, M.L. Scutaru, R. Munteanu
    Year: 2017
    Citations: 95
    Source: AIP Advances, 7(6)

  • Title: Effect of microtemperatures for micropolar thermoelastic bodies
    Authors: M. Marin, D. Baleanu, S. Vlase
    Year: 2017
    Citations: 88
    Source: Structural Engineering and Mechanics, 61(3), 381-387

  • Title: Homogenization and averaging methods to predict elastic properties of pre-impregnated composite materials
    Authors: H. Teodorescu-Draghicescu, S. Vlase
    Year: 2011
    Citations: 88
    Source: Computational Materials Science, 50(4), 1310-1314

  • Title: Finite element method analysis of some fibre-reinforced composite laminates
    Authors: H. Teodorescu-Draghicescu, A. Stanciu, S. Vlase, L. Scutaru, M.R. Calin
    Year: 2011
    Citations: 78
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 5(7), 782-785

  • Title: A method of eliminating Lagrangian multipliers from the equation of motion of interconnected mechanical systems
    Authors: S. Vlase
    Year: 1987
    Citations: 76
    Source: Not available

  • Title: Hysteresis effect in a three-phase polymer matrix composite subjected to static cyclic loadings
    Authors: H. Teodorescu-Draghicescu, S. Vlase, L. Scutaru, L. Serbina, M.R. Calin
    Year: 2011
    Citations: 74
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 5 (March 2011)

  • Title: Influence of B4C and industrial waste fly ash reinforcement particles on the microstructural characteristics and mechanical behavior of aluminium (Alโ€“Mgโ€“Si-T6) hybrid metal matrix composites
    Authors: M.S. Kumar, M. Vasumathi, S.R. Begum, S.M. Luminita, S. Vlase, C.I. Pruncu
    Year: 2021
    Citations: 61
    Source: Journal of Materials Research and Technology, 15, 1201-1216

  • Title: Behavior of multiphase fiber-reinforced polymers under short time cyclic loading
    Authors: S. Vlase, H. Teodorescu-Draghicescu, D.L. Motoc, M.L. Scutaru, L. Serbina
    Year: 2011
    Citations: 59
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 5, 419-423

  • Title: Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests
    Authors: A. Stanciu, H. Teodorescu-Drฤƒghicescu, S. Vlase, M.L. Scutaru, M.R. CวŽlin
    Year: 2012
    Citations: 58
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 6 (March-April 2012)

  • Title: Advanced pultruded glass fibers-reinforced isophtalic polyester resin
    Authors: H. Teodorescu-Draghicescu, S. Vlase, M.D. Stanciu, I. Curtu, M. Mihalcica
    Year: 2015
    Citations: 56
    Source: Mater. Plast, 52(1), 62-64

  • Title: Properties of advanced new materials used in automotive engineering
    Authors: A. Modrea, S. Vlase, H. Teodorescu-Draghicescu, M. Mihalcica, M.R. Calin
    Year: 2013
    Citations: 55
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 7 (May-June 2013)

  • Title: Simulation of the elastic properties of some fiber-reinforced composite laminates under off-axis loading system
    Authors: S. Vlase, H. Teodorescu-Draghicescu, M.R. Calin, L. Serbina
    Year: 2011
    Citations: 55
    Source: Optoelectronics and Advanced Materials-Rapid Communications, 5 (April 2011)

 

LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. LinTian Luh | Applied Mathematics | Numerical Analysis Research Award

Dr. Lin-Tian Luh is a distinguished mathematician specializing in radial basis functions, approximation theory, numerical mathematics, and topology. With a Ph.D. from the University of Gรถttingen, he has made significant contributions to the field, particularly in developing error bounds for high-dimensional interpolation and advancing the choice theory of shape parameters. Over his academic career at Providence University, where he served as a lecturer, associate professor, and full professor, he has been instrumental in enhancing research environments and collaborating internationally, notably with Professor R. Schaback. Dr. Luh has published extensively in high-impact journals, presented at major awards worldwide, and held editorial roles in reputable mathematical journals. His groundbreaking work on shape parameter selection has gained international recognition, solving longstanding challenges in the field. Honored multiple times for research excellence, he continues to push the boundaries of numerical analysis and computational mathematics, making profound impacts on scientific advancements.

Professional Profileย 

Scopus Profile
ORCID Profile

Education

Dr. Lin-Tian Luh obtained his Ph.D. in Mathematics from the University of Gรถttingen, Germany, where he studied under leading experts in numerical analysis and approximation theory. His doctoral research focused on radial basis functions and their applications in high-dimensional interpolation. Prior to his Ph.D., he completed his undergraduate and masterโ€™s studies in Taiwan, building a strong foundation in pure and applied mathematics. Throughout his academic journey, he demonstrated exceptional analytical skills and a deep passion for solving complex mathematical problems. His international education provided him with a broad perspective, allowing him to integrate diverse mathematical techniques into his research. Exposure to rigorous mathematical training at Gรถttingen further refined his expertise in error estimation and shape parameter selection. His academic achievements laid the groundwork for a successful career in both theoretical and applied mathematics, enabling him to contribute significantly to the advancement of numerical methods in scientific computation.

Professional Experience

Dr. Lin-Tian Luh has had a distinguished academic career, spanning decades of research, teaching, and mentorship. He began as a lecturer at Providence University in Taiwan, where he quickly established himself as an authority in numerical mathematics. Rising through the ranks to associate professor and later full professor, he played a pivotal role in shaping the universityโ€™s mathematics curriculum and fostering a strong research environment. He has collaborated extensively with international scholars, including Professor R. Schaback, contributing to groundbreaking advancements in radial basis function interpolation. Dr. Luh has also held visiting research positions at prestigious institutions, further strengthening his global academic impact. His dedication to teaching has inspired numerous students to pursue research in computational mathematics. Beyond academia, he has served on editorial boards of leading mathematical journals and as a reviewer for high-impact publications, solidifying his reputation as a key figure in numerical analysis and approximation theory.

Research Interest

Dr. Lin-Tian Luh’s research interests lie in numerical analysis, radial basis function (RBF) interpolation, approximation theory, and topology. He has made substantial contributions to high-dimensional interpolation techniques, particularly in error estimation and shape parameter selection for RBF methods. His work on developing optimal strategies for shape parameter choice has addressed longstanding challenges in computational mathematics, influencing applications in engineering, data science, and machine learning. He is also deeply engaged in the theoretical aspects of approximation theory, exploring new methods to improve the efficiency and accuracy of numerical algorithms. Dr. Luhโ€™s research extends into applied topology, where he investigates connections between geometric structures and computational models. His interdisciplinary approach has led to collaborations across various fields, reinforcing the importance of mathematical theory in real-world problem-solving. With numerous publications in top-tier journals, his work continues to shape the evolving landscape of numerical mathematics and scientific computation.

Awards and Honors

Dr. Lin-Tian Luh has received multiple accolades for his exceptional contributions to mathematics, particularly in numerical analysis and approximation theory. He has been recognized by prestigious mathematical societies and institutions for his pioneering work in radial basis function interpolation. His research on shape parameter selection has earned international acclaim, leading to invitations as a keynote speaker at major mathematical awards. Dr. Luh has also been honored with excellence in research awards from Providence University, where his work has significantly advanced the institutionโ€™s academic reputation. In addition, he has received grants and fellowships supporting his innovative research, further validating his impact in the field. His editorial contributions to leading mathematical journals have also been acknowledged, highlighting his influence in shaping contemporary numerical mathematics. These honors reflect his dedication, originality, and profound impact on both theoretical and applied mathematics, reinforcing his legacy as a leader in computational and approximation theory.

Conclusion

Dr. Lin-Tian Luh is a renowned mathematician whose work in numerical analysis, radial basis function interpolation, and approximation theory has significantly influenced the field. With a strong educational background from the University of Gรถttingen and an illustrious academic career at Providence University, he has played a crucial role in advancing research and mentoring future generations of mathematicians. His collaborations with international scholars and contributions to high-dimensional interpolation techniques have provided groundbreaking insights into shape parameter selection and error estimation. Recognized globally for his research excellence, he has received multiple awards and honors, further establishing his prominence in mathematical sciences. Dr. Luhโ€™s work continues to inspire and drive progress in numerical computation, bridging theoretical advancements with practical applications. His dedication to expanding mathematical knowledge and fostering innovation ensures that his contributions will have a lasting impact on the field, shaping the future of approximation theory and scientific computing.

Publications Top Noted

  • The Shape Parameter in the Shifted Surface Splineโ€”A Sharp and Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2024
    • Source: Mathematics (MDPI)
  • Solving Poisson Equations by the MN-Curve Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • The Shape Parameter in the Shifted Surface Splineโ€”An Easily Accessible Approach

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Mathematics (MDPI)
  • A Direct Prediction of the Shape Parameterโ€”A Purely Scattered Data Approach

    • Author: Lin-Tian Luh
    • Year: 2020
    • Source: Engineering Analysis with Boundary Elements (EABE)
  • The Choice of the Shape Parameterโ€“A Friendly Approach

    • Author: Lin-Tian Luh
    • Year: 2019
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Mystery of the Shape Parameter III

    • Author: Lin-Tian Luh
    • Year: 2016
    • Source: Applied and Computational Harmonic Analysis (Elsevier)
  • The Mystery of the Shape Parameter IV

    • Author: Lin-Tian Luh
    • Year: 2014
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function II

    • Author: Lin-Tian Luh
    • Year: 2013
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • The Shape Parameter in the Gaussian Function

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Computers and Mathematics with Applications (Elsevier)
  • The Shape Parameter in the Shifted Surface Spline III

    • Author: Lin-Tian Luh
    • Year: 2012
    • Source: Engineering Analysis with Boundary Elements (Elsevier)
  • Evenly Spaced Data Points and Radial Basis Functions

    • Author: Lin-Tian Luh
    • Year: 2011
    • Source: WIT Transactions on Modelling and Simulation
  • The Crucial Constants in the Exponential-Type Error Estimates for Gaussian Interpolation

    • Author: Lin-Tian Luh
    • Year: 2008
    • Source: Analysis in Theory and Applications
  • A Direct Prediction of the Shape Parameter in the Collocation Method of Solving Poisson Equation (Preprint)

    • Author: Lin-Tian Luh
    • Year: 2022
    • Source: Multidisciplinary Digital Publishing Institute (MDPI Preprints)

 

Abdelhalim Ebaid | Applied Mathematics | Best Researcher Award

Prof. Abdelhalim Ebaid | Applied Mathematics | Best Researcher Award

Professor at University of Tabuk, Saudi Arabia

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician specializing in applied mathematics and mathematical modeling. He earned his M.Sc. and Ph.D. from Ain Shams University, Egypt, and currently serves as a Professor at the University of Tabuk, Saudi Arabia. With an extensive research portfolio, he has made significant contributions to fluid mechanics, differential equations, and numerical analysis, publishing over 50 papers in high-impact journals. His work is highly recognized, with an h-index of 30 on Google Scholar and 26 on Scopus, reflecting the substantial impact of his research. He serves on the editorial boards of several prestigious journals, including Heliyon and Advances in Mechanical Engineering. His expertise spans exact solutions, nanofluid dynamics, and peristaltic transport, making him a leading figure in his field. Through his research, mentorship, and editorial contributions, Prof. Ebaid continues to advance mathematical sciences and inspire the next generation of researchers.

Professional Profileย 

Google Scholar
Scopus Profile
ORCID Profile

Education

Prof. Dr. Abdelhalim Ebaid holds both a Master of Science (M.Sc.) and a Doctor of Philosophy (Ph.D.) in Mathematics from Ain Shams University, Cairo, Egypt. He earned his M.Sc. degree in September 2003, followed by his Ph.D. in September 2007. His academic journey has been marked by a strong foundation in applied mathematics, differential equations, and mathematical modeling, which have significantly contributed to his extensive research portfolio. With a deep commitment to advancing mathematical sciences, Dr. Ebaid has developed expertise in fluid mechanics, nonlinear analysis, and computational methods. His rigorous academic training and research pursuits have positioned him as a leading figure in his field, allowing him to make substantial contributions to both theoretical and applied aspects of mathematics. His education has been instrumental in shaping his distinguished career as a professor and researcher, further enriching the scientific community through his scholarly work and mentorship.

Professional Experience

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician with extensive academic and research experience. He began his career as an Assistant Professor at the University of Tabuk, Saudi Arabia, in 2008, where he contributed significantly to mathematical research and education. In 2013, he was promoted to Associate Professor, further advancing his expertise in applied mathematics, differential equations, and mathematical modeling. His dedication and scholarly contributions earned him the position of Professor in 2020, solidifying his reputation as a leading researcher in his field. Throughout his career, Prof. Ebaid has actively participated in editorial boards of esteemed international journals, reflecting his commitment to the academic community. His prolific research output, including numerous publications in high-impact journals, has made significant contributions to mathematical sciences, particularly in fluid mechanics, nanofluid dynamics, and nonlinear differential equations. His work continues to influence and inspire researchers and students worldwide.

Research Interest

Prof. Dr. Abdelhalim Ebaid’s research interests span a broad spectrum of applied mathematics, mathematical modeling, and computational methods with applications in fluid mechanics, nanofluids, and nonlinear differential equations. His work extensively focuses on peristaltic transport, magnetohydrodynamics (MHD), and the influence of boundary conditions on fluid flow in various physical and biological systems. He has contributed significantly to solving nonlinear boundary value problems using analytical and numerical techniques, such as the Adomian decomposition method, differential transformation method, and Exp-function method. His studies also explore exact and approximate solutions for nonlinear oscillators, fractional calculus models, and their applications in mechanics and physics. Additionally, he investigates heat transfer enhancement using nanofluids, improving energy efficiency in thermal systems. As an active researcher, he aims to develop innovative computational tools and mathematical formulations to address complex real-world problems in engineering, physics, and biomedical sciences.

Award and Honor

Prof. Dr. Abdelhalim Ebaid has been recognized for his outstanding contributions to the field of mathematics, particularly in applied mathematics and mathematical modeling. His extensive research in fluid mechanics, nonlinear differential equations, and nanofluids has earned him international recognition. As a distinguished professor at the University of Tabuk, Saudi Arabia, he has published numerous high-impact research papers in esteemed journals and has been cited extensively, reflecting his influence in the academic community. He serves on the editorial boards of several prestigious journals, including Heliyon (Elsevier) and Advances in Mechanical Engineering (SAGE), further highlighting his leadership in mathematical research. His achievements include a remarkable h-index on both Scopus and Google Scholar, demonstrating the significance of his scholarly work. Through his innovative research and dedication to advancing mathematical sciences, Prof. Dr. Ebaid has made lasting contributions that continue to inspire researchers and academicians worldwide.

Conclusion

Prof. Dr. Abdelhalim Ebaid is a distinguished mathematician with a prolific research record in applied mathematics, mathematical modeling, and computational methods. His extensive contributions, including numerous high-impact publications and editorial roles in reputed journals, reflect his expertise and influence in the field. With an impressive citation count and h-index, his research has made a significant impact on the global scientific community. His work spans diverse areas, including fluid mechanics, differential equations, and nanofluid dynamics, showcasing his versatility and depth of knowledge. As a professor at the University of Tabuk, he has demonstrated strong leadership and commitment to advancing mathematical sciences. While his achievements are remarkable, further engagement in interdisciplinary collaborations and mentorship initiatives could enhance his impact even further. Given his outstanding research credentials and scholarly contributions, Prof. Dr. Ebaid is a highly deserving candidate for the Best Researcher Award, embodying excellence and innovation in mathematical research.

Publications Top Noted