Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Prof. Ashot Gevorkyan | Applied Mathematics | Pioneer Researcher Award

Dr.Sci. at Institute for Informatics and Automation Problems NAS of Republic of Armenia

Professor Ashot Sergei Gevorkyan is a distinguished theoretical physicist and mathematician specializing in quantum physics, mathematical modeling, and complex dynamical systems. Serving as Head of Scientific Direction for Modeling of Multiscale Physical-Chemical Processes, he has significantly contributed to foundational quantum mechanics, quantum chaos, stochastic systems, and spin dynamics. With a PhD from Leningrad State University and a Doctor of Sciences from St. Petersburg State University, his career spans prestigious institutions across Armenia and Russia. Prof. Gevorkyan has led numerous international research projects, including INTAS and ISTC grants, and developed high-performance parallel algorithms for quantum simulations. His prolific publication record in leading journals like Foundations of Physics, Physics of Atomic Nuclei, and Particles highlights groundbreaking work on quantum vacuum, three-body systems, and self-organizing processes. A former editorial board member of the Journal of Computational Science (Elsevier), he continues to push the boundaries of quantum theory and computational modeling with remarkable depth and innovation.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Professor Ashot Gevorkyan earned his foundational education in theoretical physics and mathematics at the Leningrad State University, where he received his PhD in Physics and Mathematics in 1978. His doctoral work focused on nonlinear dynamical systems and quantum mechanics. He later earned the prestigious Doctor of Sciences degree in 1990 from the renowned St. Petersburg State University, cementing his expertise in the fields of quantum physics and applied mathematics. Throughout his academic journey, Prof. Gevorkyan has continually integrated rigorous mathematical frameworks with physical theory, demonstrating a strong interdisciplinary foundation. His academic background set the stage for decades of pioneering research at the interface of theoretical physics, stochastic dynamics, and computational modeling. In addition to his formal degrees, Prof. Gevorkyan has participated in numerous international workshops, advanced courses, and research collaborations, enriching his academic repertoire and keeping him at the forefront of contemporary physics and mathematical innovation.

Professional Experience

Prof. Ashot Gevorkyan has held a variety of prominent academic and research roles throughout his distinguished career. He began as a researcher at the Yerevan Physics Institute and later joined the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia, where he led groundbreaking work in theoretical modeling and computational physics. He also served as a professor at the State Engineering University of Armenia and collaborated internationally with institutions in Russia and across Europe. Currently, he is Head of the Scientific Direction for Modeling of Multiscale Physical-Chemical Processes. Prof. Gevorkyan has been a principal investigator in multiple large-scale international research projects under the auspices of INTAS, ISTC, and other funding bodies, focusing on quantum chaos, complex systems, and nonlinear dynamics. His leadership in scientific modeling and computational theory has earned him a reputation as a trailblazer in both academic and applied physics communities.

Research Interest

Prof. Ashot Gevorkyan’s research interests lie at the intersection of theoretical physics, quantum mechanics, and complex dynamical systems. He is particularly renowned for his work in quantum chaos, stochastic dynamics, and modeling of multiscale systems. His investigations explore the nature of quantum vacuum, self-organizing processes in quantum systems, and nonlinear spin dynamics in stochastic fields. He has also made notable advances in mathematical modeling using high-performance parallel computing to simulate many-body quantum systems and dissipative environments. His work often combines mathematical rigor with physical intuition, producing results that influence both theory and practical applications. Prof. Gevorkyan’s research portfolio extends to optical turbulence, quantum three-body problems, and fractal structures in open quantum systems. His cross-disciplinary approach has fostered collaborations across mathematics, physics, and computer science, contributing significantly to our understanding of complex physical phenomena and enabling new computational techniques in modern physics.

Award and Honor

Throughout his career, Prof. Ashot Gevorkyan has received numerous awards and honors recognizing his exceptional contributions to science. He has been honored by leading scientific institutions for his pioneering work in quantum theory and mathematical modeling. His projects have received support and recognition from international research programs such as INTAS (International Association for the promotion of cooperation with scientists from the New Independent States of the former Soviet Union) and ISTC (International Science and Technology Center), reflecting the global impact of his research. He has been invited to serve as a keynote speaker and visiting scientist at several prominent international conferences and workshops. Prof. Gevorkyan also served on the editorial board of the Journal of Computational Science (Elsevier), a role that underscores his status as a leading voice in the computational physics community. These accolades affirm his influence in shaping contemporary research across theoretical and applied physics.

Conclusion

Professor Ashot Gevorkyan stands as a luminary in the fields of theoretical physics and computational mathematics. His deep expertise in quantum systems, chaotic dynamics, and complex modeling has not only advanced fundamental science but also provided new computational tools for understanding nature’s most intricate processes. With a career spanning over four decades, he has demonstrated an unwavering commitment to scientific excellence through research, teaching, and international collaboration. His interdisciplinary work bridges theoretical insights with practical innovations, setting a high standard in modern scientific inquiry. Recognized both nationally and internationally, Prof. Gevorkyan continues to inspire the global scientific community through his profound intellect, visionary ideas, and groundbreaking publications. His legacy is defined by a lifelong pursuit of knowledge and a passion for decoding the complexities of the universe through mathematics and physics.

Publications Top Notes

  • Title: General Three-Body Problem in Conformal-Euclidean Space: New Properties of a Low-Dimensional Dynamical System
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2024
    Source: Particles, 2024

  • Title: Quantum Chromodynamics of the Nucleon in Terms of Complex Probabilistic Processes
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2024
    Citations: 1
    Source: Symmetry, 2024

  • Title: Time-Dependent 4D Quantum Harmonic Oscillator and Reacting Hydrogen Atom
    Authors: A.S. Gevorkyan, A.V. Bogdanov
    Year: 2023
    Citations: 1
    Source: Symmetry, 2023

  • Title: Theoretical and Numerical Study of Self-Organizing Processes in a Closed System Classical Oscillator and Random Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev, K.A. Movsesyan
    Year: 2022
    Citations: 2
    Source: Mathematics, 2022

  • Title: Hidden Dynamical Symmetry and Quantum Thermodynamics from the First Principles: Quantized Small Environment
    Authors: A.S. Gevorkyan, A.V. Bogdanov, V.V. Mareev
    Year: 2021
    Citations: 3
    Source: Symmetry, 2021

  • Title: Gamma Radiation Production Using Channeled Positron Annihilation in Crystals
    Authors: A.S. Gevorkyan, K.B. Oganesyan, Y.V. Rostovtsev, G. Kurizki
    Year: 2015
    Citations: 61
    Source: Laser Physics Letters, 12(7), 076002

  • Title: Dielectric Permittivity Superlattice Formation
    Authors: G.A. Amatuni, A.S. Gevorkyan, S.G. Gevorkian, A.A. Hakobyan, K.B. Oganesyan, et al.
    Year: 2008
    Citations: 60
    Source: Laser Physics, 18, 608–620

  • Title: Statistical Properties of Random Environment of 1D Quantum N-Particles System in External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan
    Year: 2010
    Citations: 45
    Source: Physics of Atomic Nuclei, 73, 320–325

  • Title: A Disordered 1D Quantum N-Particle System in an Environment under the Influence of an External Field
    Authors: A.S. Gevorkyan, A.A. Gevorkyan, K.B. Oganesyan, G.O. Sargsyan, et al.
    Year: 2010
    Citations: 44
    Source: Physica Scripta, 2010 (T140), 014045

  • Title: Quantum-Mechanical Channel of Interactions Between Macroscopic Systems
    Authors: R.S. Sargsyan, G.G. Karamyana, A.S. Gevorkyan, A.Y. Khrennikov
    Year: 2010
    Citations: 22
    Source: AIP Conference Proceedings, 1232(1), 267

  • Title: Random Motion of Quantum Harmonic Oscillator – Thermodynamics of Nonrelativistic Vacuum
    Authors: A.V. Bogdanov, A.S. Gevorkyan, A.G. Grigoryan
    Year: 1999
    Citations: 20
    Source: AMS IP Studies in Advanced Mathematics, 13, 81–112

  • Title: Bioscope: New Sensor for Remote Evaluation of the Physiological State of Biological Systems
    Authors: R.S. Sargsyan, A.S. Gevorkyan, G.G. Karamyan, V.T. Vardanyan, et al.
    Year: 2011
    Citations: 15
    Source: Physical Properties of Nanosystems, 299–309

  • Title: Three Body Multichannel Scattering as a Model of Irreversible Quantum Mechanics
    Authors: A.V. Bogdanov, A.S. Gevorkyan
    Year: 1997
    Citations: 13
    Source: arXiv preprint, quant-ph/9712022

  • Title: Nonrelativistic Quantum Mechanics with Fundamental Environment
    Author: A.S. Gevorkyan
    Year: 2012
    Citations: 12
    Source: Theoretical Concepts of Quantum Mechanics, 161–187

  • Title: Retracted: New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System under the Influence of External Field
    Authors: A.S. Gevorkyan, C.K. Hu, S. Flach
    Year: 2010
    Citations: 12
    Source: Transactions on Computational Science VII, E1–E1

  • Title: Regular and Chaotic Quantum Dynamics in Atom-Diatom Reactive Collisions
    Authors: A.S. Gevorkyan, A.V. Bogdanov, G. Nyman
    Year: 2008
    Citations: 12
    Source: Physics of Atomic Nuclei, 71, 876–883

  • Title: Exactly Solvable Models of Stochastic Quantum Mechanics within the Framework of Langevin-Schroedinger Type Equations
    Author: A.S. Gevorkyan
    Year: 2004
    Citations: 11
    Source: Topics in Analysis and its Applications, 415–442

  • Title: A New Parallel Algorithm for Simulation of a Spin-Glass System on Scales of Space-Time Periods of an External Field
    Authors: A.S. Gevorkyan, A.G. Abadzhyan, G.S. Sukiasyan
    Year: 2011
    Citations: 10
    Source: Lab. of Information Technologies

 

Alexander Bratus | Applied Mathematics | Best Researcher Award

Prof. Dr. Alexander Bratus | Applied Mathematics | Best Researcher Award

Department of digital control of transport at Russia University of Transport, Russia.

Prof. Dr. Alexander Bratus is a distinguished researcher in mathematical biology, dynamical systems, and control theory, with significant contributions to replicator dynamics, evolutionary adaptation, and immune system modeling. His extensive research, spanning biological systems, cancer therapy, and ecological modeling, is reflected in numerous high-impact publications in journals like Mathematical Biosciences, Journal of Mathematical Biology, and Physica A. He has co-authored influential books, including Dynamical Systems and Biological Models and Mathematical Models Evolution and Dynamics of Replicator Systems. His interdisciplinary approach integrates mathematics, biology, and medicine, making his work highly relevant to applied sciences. Collaborating with leading experts worldwide, he has advanced the understanding of complex biological and medical systems. With his dedication to research excellence, impactful publications, and interdisciplinary innovations, Prof. Bratus is a strong contender for the Best Researcher Award, contributing significantly to both theoretical and applied mathematical sciences.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Prof. Dr. Alexander Bratus earned his advanced degrees in mathematics and applied sciences from prestigious institutions in Russia. He pursued his Ph.D. in Mathematical Modeling and Dynamical Systems, focusing on the application of differential equations and optimization techniques in biological and ecological systems. His doctoral research laid the foundation for his extensive work in evolutionary dynamics, control systems, and mathematical biology. He continued his academic journey with a postdoctoral fellowship, where he expanded his expertise in replicator systems, optimization theory, and stochastic processes. His strong mathematical foundation, coupled with interdisciplinary exposure, has enabled him to develop groundbreaking research in biological evolution, immune system modeling, and cancer therapy optimization. Over the years, he has mentored numerous graduate students and young researchers, contributing to the next generation of mathematical scientists. His educational background has been instrumental in shaping his research career, positioning him as a leader in applied mathematics and computational biology.

Professional Experience

Prof. Dr. Alexander Bratus is a professor and researcher in the Department of Digital Control of Transport at Russia University of Transport. With decades of experience in academia and research, he has played a pivotal role in mathematical modeling, applied dynamical systems, and control theory. He has led multiple research projects, collaborating with leading international scientists to develop mathematical models in biomedicine, ecology, and evolutionary game theory. His professional journey includes serving as a principal investigator in multidisciplinary projects, editorial board memberships in renowned scientific journals, and keynote speaker invitations at global conferences. His expertise extends beyond theoretical research, as he has actively contributed to industrial and healthcare applications through mathematical optimization and system control. His leadership in scientific communities has fostered advancements in mathematical biology and computational methods, establishing him as an influential figure in applied mathematics, mathematical physics, and bioinformatics.

Research Interest

Prof. Dr. Alexander Bratus’s research interests lie in mathematical modeling, dynamical systems, and evolutionary biology, with a strong focus on biological and ecological applications. His work explores the mathematical structures underlying biological evolution, immune system interactions, and cancer therapy strategies. He is particularly interested in replicator dynamics, game-theoretic models, and optimal control methods for biomedical systems. His studies on feedback control in leukemia therapy, antigen-driven immune responses, and tumor growth dynamics have led to innovative approaches in personalized medicine and disease treatment. His interdisciplinary research extends to transport system dynamics, economic growth modeling, and nonlinear distributed systems, reflecting his broad scientific expertise. Through computational simulations and analytical frameworks, he continues to bridge mathematics with real-world applications, making significant contributions to healthcare, ecology, and optimization problems. His diverse research portfolio highlights his commitment to advancing theoretical and applied mathematics in modern science.

Awards and Honors

Throughout his career, Prof. Dr. Alexander Bratus has received numerous awards and recognitions for his outstanding contributions to mathematical modeling and applied sciences. His work in evolutionary dynamics, control theory, and computational biology has been recognized with prestigious research grants, international fellowships, and best paper awards. He has been honored by leading mathematical societies and scientific organizations, acknowledging his innovative contributions to interdisciplinary mathematics. He has also been a recipient of excellence in teaching and mentoring awards, reflecting his dedication to academic leadership and student mentorship. His involvement in editorial boards of top-tier scientific journals, invited lectures at major conferences, and advisory roles in research institutions further solidifies his status as a renowned mathematical scientist. His impactful research and international collaborations continue to shape the future of mathematical and computational sciences, earning him global recognition.

Conclusion

Prof. Dr. Alexander Bratus is a highly accomplished mathematician and researcher, whose work has significantly influenced mathematical biology, control systems, and evolutionary game theory. His extensive contributions to replicator dynamics, immune system modeling, and cancer therapy optimization highlight his interdisciplinary approach and scientific leadership. With a strong academic background, remarkable professional experience, and an impressive list of publications, he has established himself as a pioneer in applied mathematics. His dedication to advancing mathematical sciences, mentoring young researchers, and fostering international collaborations makes him an ideal candidate for the Best Researcher Award. His groundbreaking research continues to bridge the gap between theoretical mathematics and real-world applications, impacting biomedicine, ecology, and engineering. As a globally recognized scientist, he remains committed to solving complex problems through mathematical innovation, leaving a lasting impact on the scientific community.

Publications Top Noted

  • Title: Dynamic Programming-Based Approach to Model Antigen-Driven Immune Repertoire Synthesis

    • Authors: A.S. Bratus’, G.A. Bocharov, D. Grebennikov

    • Year: 2024

    • Citations: 0

    • Source: Mathematics

  • Title: Food Webs and the Principle of Evolutionary Adaptation

    • Authors: A.S. Bratus’, S. Drozhzhin, A.V. Korushkina, A.S. Novozhilov

    • Year: 2024

    • Citations: 0

    • Source: Physica A: Statistical Mechanics and its Applications

  • Title: On a Hypercycle Equation with Infinitely Many Members

    • Authors: A.S. Bratus’, O.S. Chmereva, I.Y. Yegorov, A.S. Novozhilov

    • Year: 2023

    • Citations: 0

    • Source: Journal of Mathematical Analysis and Applications

  • Title: Existence of Closed Trajectories in Lotka-Volterra Systems in Rⁿ

    • Authors: A.S. Bratus’, V.V. Tikhomirov, R. Isaev

    • Year: Unknown

    • Citations: 0

    • Source: Book Chapter (No source information available)

  • Title: Mathematical Model of Pancreatic Cancer Cell Dynamics Considering the Set of Sequential Mutations and Interaction with the Immune System

    • Authors: A.S. Bratus’, N.R. Leslie, M. Chamo, G.A. Bocharov, D. Yurchenko

    • Year: 2022

    • Citations: 0

    • Source: Mathematics

  • Title: Mathematical Model of the Infection Spread in Transport Based on the Theory of Porous Medium

    • Authors: A. Ocheretyanaya, A.S. Bratus’

    • Year: 2022

    • Citations: 0

    • Source: Advances in Systems Science and Applications

  • Title: Open Quasispecies Systems: New Approach to Evolutionary Adaptation

    • Authors: I. Samokhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2022

    • Citations: 1

    • Source: Chinese Journal of Physics

  • Title: Fitness Optimization and Evolution of Permanent Replicator Systems

    • Authors: S. Drozhzhin, T.S. Yakushkina, A.S. Bratus’

    • Year: 2021

    • Citations: 2

    • Source: Journal of Mathematical Biology

  • Title: Dynamical Systems and Models in Biology

    • Authors: A.S. Bratus’, A.S. Novozhilov, A.P. Platonov

    • Year: 2010

    • Citations: 140

    • Source: Fizmatlit (in Russian)

  • Title: Optimal Bounded Control of Steady-State Random Vibrations

    • Authors: M.F. Dimentberg, D.V. Iourtchenko

    • Year: 2000

    • Citations: 64

    • Source: Probabilistic Engineering Mechanics

  • Title: Bounded Parametric Control of Random Vibrations

    • Authors: M.F. Dimentberg, A.S. Bratus’

    • Year: 2000

    • Citations: 54

    • Source: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences

  • Title: Bimodal Solutions in Eigenvalue Optimization Problems

    • Authors: A.S. Bratus’, A.P. Seiranian

    • Year: 1983

    • Citations: 49

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Hybrid Solution Method for Dynamic Programming Equations for MDOF Stochastic Systems

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko, M. Noori

    • Year: 2000

    • Citations: 44

    • Source: Dynamics and Control

  • Title: On Strategies on a Mathematical Model for Leukemia Therapy

    • Authors: A.S. Bratus’, E. Fimmel, Y. Todorov, Y.S. Semenov, F. Nuernberg

    • Year: 2012

    • Citations: 43

    • Source: Nonlinear Analysis: Real World Applications

  • Title: Optimal Bounded Response Control for a Second-Order System Under a White-Noise Excitation

    • Authors: A. Bratus, M. Dimentberg, D. Iourtchenko

    • Year: 2000

    • Citations: 43

    • Source: Journal of Vibration and Control

  • Title: Optimal Radiation Fractionation for Low-Grade Gliomas: Insights from a Mathematical Model

    • Authors: T. Galochkina, A. Bratus, V.M. Pérez-García

    • Year: 2015

    • Citations: 33

    • Source: Mathematical Biosciences

  • Title: Optimal Control Synthesis in Therapy of Solid Tumor Growth

    • Authors: A.S. Bratus’, E.S. Chumerina

    • Year: 2008

    • Citations: 30

    • Source: Computational Mathematics and Mathematical Physics

  • Title: Solution of the Feedback Control Problem in the Mathematical Model of Leukemia Therapy

    • Authors: A. Bratus, Y. Todorov, I. Yegorov, D. Yurchenko

    • Year: 2013

    • Citations: 28

    • Source: Journal of Optimization Theory and Applications

  • Title: Stabilizing and Destabilizing Effects in Non-Conservative Systems

    • Authors: N.V. Banichuk, A.S. Bratus, A.D. Myshkis

    • Year: 1989

    • Citations: 26

    • Source: Journal of Applied Mathematics and Mechanics

  • Title: Linear Algebra of the Permutation Invariant Crow-Kimura Model of Prebiotic Evolution

    • Authors: A.S. Bratus, A.S. Novozhilov, Y.S. Semenov

    • Year: 2014

    • Citations: 25

    • Source: Mathematical Biosciences

 

 

Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Prof. Dr. Evgeny Kuznetsov | Mathematical Physics | Mathematical Physics Leadership Award

Head of Laboratory of Mathematical Physics at Lebedev Physical Institute of RAS, Russia

Dr. Evgenii Alexandrovich Kuznetsov is a distinguished Russian physicist and mathematician, renowned for his groundbreaking research in nonlinear waves, turbulence, and integrable systems. He earned his Ph.D. in Mathematics and Physics in 1973 and has since contributed significantly to the fields of plasma physics, hydrodynamics, and nonlinear wave theory. Dr. Kuznetsov holds prominent academic positions, including his role as a Principal Research Fellow at the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has been a leading figure in the Center for Nonlinear Studies and has served as Director of the Novosibirsk Department of the International Institute for Nonlinear Science. With extensive international experience as a visiting professor at top institutions worldwide, he is deeply engaged in promoting mathematical physics education. His legacy is marked by numerous publications, significant contributions to theoretical physics, and a strong commitment to advancing nonlinear science globally.

Professional Profile 

Google Scholar
Scopus Profile

Education

Dr. Evgenii Alexandrovich Kuznetsov’s educational journey began at Novosibirsk State University, where he completed his undergraduate studies in Physics in 1969. ‘Including Deputy Director of the Landau Institute of Theretical Physics and the Center of Nonlinear Studies”. His academic pursuits led to a Ph.D. in Mathematics and Physics in 1973 from the Institute for Nuclear Physics at the Siberian Branch of the USSR Academy of Sciences. His doctoral thesis focused on nonlinear waves in plasma, under the guidance of Prof. V.E. Zakharov. In 1981, he earned his Doctorate in Mathematics and Physics, with a thesis on the stability of nonlinear waves and turbulence, solidifying his expertise in nonlinear dynamics. His educational background laid the foundation for a distinguished career in theoretical physics, contributing significantly to both research and academic teaching in the field.
(i) Derivation of the so-called Zakharov-Kuznetsov (ZK) equation for describing ion-acoustic waves in a magnetzed plasma, finding within this equation 3D solitons with their Lyapunov stability proving with the help of the Sobolev integral estimation;
(ii) Finding first time exact anisotropic spectra of weak turbulence of the Kolmogorov type for ion-acoustic waves in strongly magnetized plasma with the help of the so called Zakharov-Kuznetsov transformation;
(iii) Construting first time exact solution for breathers of the 1D nonlinear Schrodinger equation by means of the inverse scattering transform.

Professional Experience

Dr. Kuznetsov’s professional experience spans over five decades, beginning as a trainee researcher in 1969 at the Institute for Nuclear Physics. He later became a senior research fellow and head of the Laboratory of Nonlinear Physics at the Institute of Automation and Electrometry. In 1992, he joined the Landau Institute for Theoretical Physics and the P.N. Lebedev Physical Institute, where he held pivotal roles, including Deputy Director of the Center for Nonlinear Studies. He has also been a visiting professor at renowned institutions like the Weizmann Institute of Science and the University of Colorado. Throughout his career, Dr. Kuznetsov has contributed immensely to research and education in nonlinear physics, turbulence, and integrable systems. His extensive career reflects his leadership in scientific research and his role as a mentor to future generations of physicists.

Research Interests

Dr. Kuznetsov’s primary research interests revolve around nonlinear wave dynamics, turbulence, and integrable systems. He has made significant contributions to the study of solitons, plasma physics, and nonlinear hydrodynamics. His research spans a variety of topics, including the stability of nonlinear waves, wave propagation in plasma, and the mathematics of integrable systems. He has pioneered the study of complex wave interactions and turbulence, particularly in plasma and fluid dynamics. Dr. Kuznetsov has also worked on the development of theoretical frameworks for nonlinear phenomena in various physical systems, including those in plasma, hydrodynamics, and integrable systems. His work continues to influence the understanding of nonlinear dynamics in both classical and quantum systems.

Awards and Honors

Dr. Kuznetsov has received numerous awards and honors throughout his career, recognizing his outstanding contributions to theoretical physics and nonlinear science. He has been a principal research fellow at prestigious Russian institutes, including the P.N. Lebedev Physical Institute and the Landau Institute for Theoretical Physics. He has received recognition for his role in advancing nonlinear physics, particularly in the areas of wave dynamics, turbulence, and solitons. His work has also led to invitations as a visiting professor at esteemed institutions worldwide, further attesting to his global influence in the field. His leadership in the Center for Nonlinear Studies and his involvement in international research collaborations have solidified his reputation as a leader in mathematical physics. He was awarded by the L.I. Mandelstam Price of the Russian Academy of Sciences for the cycle of works “Wave collapses in plasma, optics and hydrodynamics” (2012), elected as a full member of the Russian Academy of Sciences (2016).

Conclusion

Dr. Evgenii Kuznetsov’s career is marked by groundbreaking research, leadership in the scientific community, and a deep commitment to advancing the field of nonlinear physics. His extensive academic experience, both as a researcher and educator, has made him a prominent figure in theoretical physics. He has significantly contributed to our understanding of nonlinear waves, turbulence, and integrable systems, leaving a lasting legacy in these fields. His leadership roles at major Russian institutes and his involvement in international collaborations have established him as a key figure in the global scientific community. Dr. Kuznetsov’s continued work and mentorship will undoubtedly inspire future generations of physicists, ensuring that his impact on the field of mathematical physics endures for years to come.

Publications Top Noted

  • Title: Three-Dimensional Acoustic Turbulence: Weak Versus Strong
    Authors: E.A. Kochurin, Evgeny A. Kuznetsov
    Year: 2024
    Citations: 3
    Source: Physical Review Letters

  • Title: Mathematical Methods of Physics: Problems with Solutions
    Authors: I.V. Kolokolov, E.A. Kuznetsov, A.I. Milstein, D.A. Shapiro, E.G. Shapiro

  • Title: Magnetic Filaments: Formation, Stability, and Feedback
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2024
    Source: Mathematics

  • Title: Quasiclassical Dynamics of Nonlinear Wave Systems
    Authors: E.A. Kuznetsov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Reply to the Comment to the Paper “Symmetry Approach in the Problem of Gas Expansion into Vacuum”
    Authors: E.A. Kuznetsov, M.Y. Kagan

  • Title: Nonlinear Dynamics of Slipping Flows
    Authors: E.A. Kuznetsov, E.A. Mikhailov, M.G. Serdyukov
    Year: 2023
    Source: Radiophysics and Quantum Electronics

  • Title: Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review)
    Authors: M.Y. Kagan, S.V. Aksenov, A.V. Turlapov, V.M. Silkin, E.A. Burovski
    Year: 2023
    Citations: 3
    Source: JETP Letters

  • Title: Direct Numerical Simulation of Acoustic Turbulence: Zakharov–Sagdeev Spectrum
    Authors: E.A. Kochurin, E.A. Kuznetsov
    Year: 2022
    Citations: 10
    Source: JETP Letters

  • Title: Slipping Flows and Their Breaking
    Authors: E.A. Kuznetsov, E.A. Mikhailov
    Year: 2022
    Citations: 8
    Source: Annals of Physics

  • Title: Instability of Solitons and Collapse of Acoustic Waves in Media with Positive Dispersion
    Authors: E.A. Kuznetsov
    Year: 2022
    Citations: 5
    Source: Journal of Experimental and Theoretical Physics

  • Title: Turbulence of Ion Sound in a Plasma Located in a Magnetic Field
    Authors: E.A. Kuznetsov
    Year: 1972
    Citations: 58
    Source: Soviet Physics JETP, Vol. 35, p. 310
  • Title: Solitons in a Parametrically Unstable Plasma
    Authors: E.A. Kuznetsov
    Year: 1977
    Citations: 655
    Source: Doklady Akademii Nauk SSSR, Vol. 236, pp. 575–577
  • Title: Three-Dimensional Solitons
    Authors: V.E. Zakharov, E.A. Kuznetsov
    Year: 1974
    Citations: 500
    Source: Soviet Physics – Journal of Experimental and Theoretical Physics

 

 

Shenzhou Zheng | Differential Equations | Best Researcher Award

Prof. Shenzhou Zheng | Differential Equations | Best Researcher Award

Professor at Beijing Jiaotong University, China

Prof. Zheng Shenzhou, a distinguished researcher in differential equations, special functions, and financial mathematics, is a professor and doctoral supervisor at Beijing Jiaotong University. With a PhD from Fudan University, he has made groundbreaking contributions, including applying Green’s function to nonlinear PDEs and resolving conjectures in special functions. He has published over 100 SCI papers in prestigious journals such as Transactions of the American Mathematical Society and Journal of Functional Analysis. Prof. Zheng has collaborated with renowned institutions like the Basque Center for Applied Mathematics and the Chern Institute of Mathematics. His research is backed by multiple grants from the National Natural Science Foundation of China. A dedicated educator, he teaches advanced mathematics and mentors doctoral students. While his theoretical contributions are profound, expanding interdisciplinary applications and global recognition would further solidify his impact. His work continues to shape modern mathematical analysis and its applications in physics and finance.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Prof. Zheng Shenzhou holds a PhD in Mathematics from Fudan University (1997), where he conducted advanced research in differential equations and mathematical analysis. Prior to that, he earned his Master’s degree from Beijing Normal University (1994), focusing on foundational aspects of applied mathematics. His academic journey provided him with deep expertise in theoretical and computational mathematics, setting the stage for his prolific research career. Throughout his studies, he honed his skills in partial differential equations, special functions, and statistical mechanics, which later became key themes in his research. His education at two of China’s most prestigious institutions, combined with his early exposure to high-level mathematical modeling, allowed him to develop innovative approaches to mathematical problems. These formative years shaped his ability to tackle complex mathematical challenges and laid the groundwork for his future contributions to both theoretical and applied mathematics in academia and beyond.

Professional Experience

Prof. Zheng Shenzhou has had a distinguished academic and research career spanning over two decades. He has been a professor at the School of Science, Beijing Jiaotong University, since 2005, where he also served as an associate professor and lecturer in previous years. His career includes multiple international research collaborations, such as visiting professorships at the Basque Center for Applied Mathematics, the Chern Institute of Mathematics, and institutions in the United States, including the University of Chicago and the University of Texas. His professional experience also extends to research positions at the Chinese Academy of Sciences, where he worked on applied mathematics and systems science. Through these roles, Prof. Zheng has contributed significantly to differential equation theory, special functions, and mathematical physics. His diverse academic engagements reflect his commitment to advancing mathematical knowledge, fostering international research collaborations, and mentoring the next generation of mathematicians and statisticians.

Research Interest

Prof. Zheng Shenzhou’s research primarily focuses on differential equation theory and its applications, special functions, and financial mathematics. His work on partial differential equations (PDEs) has provided groundbreaking insights into nonlinear problems, particularly through the innovative use of Green’s function for regularity analysis. Additionally, his studies on the modified Bessel function resolved conjectures in special functions and extended the understanding of uncertainty principles. Prof. Zheng has also contributed to the development of elliptic and parabolic equation theories under weak conditions, influencing fields like material science and electrorheology. His research extends into financial statistical analysis, applying mathematical models to quantify uncertainty in economic systems. With extensive publications in leading mathematical journals, his work bridges fundamental mathematical theory with real-world applications. Moving forward, his research continues to shape the landscape of applied mathematics, deepening the understanding of mathematical structures governing physical, economic, and engineering systems.

Awards and Honors

Prof. Zheng Shenzhou has received multiple research grants from the National Natural Science Foundation of China (NSFC), recognizing his contributions to differential equations, harmonic analysis, and nonlinear mathematical modeling. His ability to solve long-standing mathematical conjectures has earned him recognition within the global mathematical community. His international collaborations with leading research institutions, including the Basque Center for Applied Mathematics and the Chern Institute of Mathematics, further highlight his academic excellence. His work has been featured in top-tier mathematical journals, solidifying his reputation as a leading researcher in applied mathematics. While specific individual awards are not listed, his research funding and extensive publication record attest to his influence in the field. Continued recognition at international conferences, interdisciplinary collaborations, and engagement in global mathematical forums could further elevate his status as a pioneering mathematician.

Conclusion

Prof. Zheng Shenzhou is a distinguished mathematician whose work in differential equations, special functions, and mathematical physics has had a lasting impact on both theoretical and applied mathematics. With a strong academic background, extensive research experience, and numerous high-impact publications, he has made significant contributions to mathematical science. His research has advanced the understanding of nonlinear PDEs, uncertainty principles, and their applications in various scientific domains. While he has received substantial research funding and collaborated internationally, expanding interdisciplinary applications and enhancing global recognition could further strengthen his academic influence. As a dedicated educator and mentor, his work continues to inspire future mathematicians. His expertise and innovative approach make him a strong candidate for prestigious research awards, and his contributions will remain highly relevant in the evolving landscape of applied mathematics.

Publications Top Noted

 

Leonid Litinskii | Applied Mathematics | Best Researcher Award

Dr. Leonid Litinskii | Applied Mathematics | Best Researcher Award

Retired at Scientific Research Institute for System Analysis (formerly), Russia

Dr. Leonid Litinskii is a retired principal research scientist with an extensive academic and professional background in mathematical methods and statistical physics. He graduated from Kharkiv State University, Ukraine, and held prominent positions at the Institute for High Pressure Physics, Russian Academy of Sciences, and the Scientific Research Institute for System Analysis. With over 50 years of research experience, Dr. Litinskii is known for his pioneering work in developing the theory of vector neuron networks and the n-vicinity method for calculating the partition function in the Ising model. He has published around 100 papers in renowned scientific journals and contributed to the study of eigenvalues in the Ising model’s connection matrix. Additionally, Dr. Litinskii has made significant contributions to the analysis of quadratic functionals in large binary variable systems. A member of the European Neural Networks Society, he has left a lasting impact on the fields of mathematics and neural networks.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Dr. Leonid Litinskii completed his education at Kharkiv State University (now V. N. Karazin Kharkiv National University) in Ukraine, where he studied mathematics from 1966 to 1971. This solid foundation in mathematics paved the way for his distinguished career as a scientific researcher. His academic journey has always been focused on applying mathematical methods to complex scientific problems, particularly in statistical physics and neural networks. His studies and early research experiences contributed significantly to his future breakthroughs in these fields.

Professional Experience

Dr. Litinskii’s professional career spans over five decades, with notable research positions at esteemed institutions. He began his career as a scientific researcher at the Institute for High Pressure Physics of the Russian Academy of Sciences from 1973 to 2001. From 2001 to 2023, he worked as a Principal Research Scientist at the Scientific Research Institute for System Analysis, also within the Russian Academy of Sciences. Throughout his career, Dr. Litinskii has contributed extensively to the fields of mathematical physics and neural networks.

Research Interest

Dr. Litinskii’s research interests are primarily centered around mathematical methods in statistical physics and their application to neural networks. He has developed the theory of vector neuron networks and formulated the n-vicinity method for calculating the partition function of the Ising model. His work on the properties of eigenvalues in the Ising model’s connection matrix has been a significant contribution to the field of computational physics. Additionally, Dr. Litinskii has focused on the study of quadratic functionals in large binary variable systems, advancing mathematical modeling techniques.

Award and Honor

Throughout his career, Dr. Litinskii has earned recognition for his groundbreaking work in neural networks and statistical physics. While the details of specific awards and honors are not provided, his long tenure as a Principal Research Scientist and his role in advancing the fields of mathematics and neural networks have earned him respect and recognition in the scientific community. He is a member of the European Neural Networks Society, further emphasizing his distinguished position in the research community.

Conclusion

Dr. Leonid Litinskii’s career is a testament to dedication, innovation, and scholarly excellence. With over 50 years of research experience, his contributions to mathematical physics, neural networks, and statistical physics have been substantial. His work in developing the theory of vector neuron networks and the n-vicinity method has had a lasting impact on these fields. Though he has not yet focused on patents or practical applications, his theoretical contributions remain foundational. Dr. Litinskii’s legacy is one of a leading thinker who has shaped the advancement of mathematical and physical sciences.

Publications Top Noted

 

 

Boris Kryzhanovsky | Applied Mathematics | Best Researcher Award

Prof. Dr. Boris Kryzhanovsky | Applied Mathematics | Best Researcher Award

Chief researcher at Scientific Research Institute for System Analysis of the National Research Center “Kurchatov Institute”, Russia

Dr. Boris Kryzhanovsky is a distinguished researcher with over five decades of experience in the fields of quantum electrodynamics, laser physics, and mathematical methods in neural networks, statistical physics, and nanotechnology. He graduated from Yerevan State University in 1971 and has since contributed significantly to scientific advancements. His work includes pioneering research in nonstationary four-wave mixing, the development of vector neural networks with large memory, and innovative methods for calculating partition functions of spin systems. Dr. Kryzhanovsky has published over 200 articles in renowned journals and holds an h-index of 19, reflecting the impact of his research. He is also the Editor-in-Chief of Optical Memory and Neural Networks and a Corresponding Member of the Russian Academy of Sciences. His leadership and extensive collaboration with international scientific communities further underscore his prominent role in advancing research in his fields of expertise.

Professional Profile 

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Boris Kryzhanovsky completed his education at Yerevan State University, Armenia, where he graduated from the Physical Department in 1971. His academic foundation laid the groundwork for a distinguished career in scientific research. Throughout his career, Dr. Kryzhanovsky has maintained a strong commitment to advancing his knowledge in complex scientific fields, particularly in quantum electrodynamics, laser physics, and mathematical methods applied to neural networks and statistical physics. His early training at one of Armenia’s most prestigious universities provided him with the critical thinking and theoretical skills that have shaped his extensive body of work in these areas.

Professional Experience

Dr. Kryzhanovsky’s professional career spans over five decades, starting as a scientific researcher at the Institute for Physical Research in Armenia (1971-1991). He later worked at the Institute for Optical-Neuron Technologies RAS (1996-2006) and currently holds a chief researcher position at the Scientific Research Institute for System Analysis RAS. His career has seen significant contributions to the fields of neural networks and statistical physics, with leadership roles including Editor-in-Chief of Optical Memory and Neural Networks. Dr. Kryzhanovsky’s work is widely recognized for its deep theoretical insights and practical applications in various scientific domains.

Research Interests

Dr. Kryzhanovsky’s research interests are diverse, encompassing neural networks, statistical physics, and nanotechnology. He has made groundbreaking contributions in developing mathematical methods for the analysis of neural networks, especially focusing on vector neural networks with large memory for recognizing noisy patterns. Additionally, his work on the theory of nonstationary processes in quantum electrodynamics and the development of methods for calculating partition functions of spin systems highlights his interdisciplinary approach. His research also explores nanotechnology, particularly in relation to statistical mechanics, contributing to advances in both theoretical and applied physics.

Awards and Honors

Dr. Kryzhanovsky has received numerous honors throughout his career, underpinned by his significant contributions to scientific research. He is a Corresponding Member of the Russian Academy of Sciences and holds leadership positions in various academic and scientific societies. His work is frequently cited, reflected in his impressive h-index of 19 on Google Scholar, and he has authored over 200 journal articles in reputable SCI and Scopus-indexed publications. His professional standing and achievements are also evident from his role as Editor-in-Chief of Optical Memory and Neural Networks, further cementing his reputation in the scientific community.

Conclusion

Dr. Boris Kryzhanovsky is a highly respected researcher whose contributions to quantum electrodynamics, laser physics, neural networks, and statistical physics have had a profound impact on both theoretical and applied sciences. His academic background, coupled with extensive professional experience, has led to groundbreaking research that continues to shape the direction of several scientific fields. With a remarkable publication record and leadership roles within the scientific community, Dr. Kryzhanovsky remains a key figure in advancing knowledge and innovation. His achievements and dedication to research make him a standout in his field, deserving recognition for his substantial contributions to science.

Publications Top Noted

 

 

 

Sabah Kausar | Applied Mathematics | Young Scientist Award

Dr. Sabah Kausar | Applied Mathematics | Young Scientist Award

University of Gujrat, Pakistan

Dr. Sabah Kausar is a dedicated physicist and researcher specializing in nanomaterials, photocatalysis, and environmental sustainability. With an MPhil in Physics from the University of Gujrat, her research focuses on synthesizing and characterizing advanced nanocomposites for applications in water purification, antimicrobial treatments, and food preservation. She has expertise in XRD, SEM, FTIR, PL, UV-Vis spectroscopy, and EDX, demonstrating a strong technical background. Her publications on Ag-doped BiVO₄ and BiVO₄/ZnO nanocomposites highlight significant advancements in photocatalytic degradation and extended shelf life of fruits. Passionate about interdisciplinary research, Dr. Kausar’s work bridges nanotechnology, environmental science, and material physics. She aspires to expand her contributions through international collaborations, high-impact publications, and practical industrial applications. With a keen focus on sustainability and innovation, she is a promising young scientist making impactful contributions to applied physics and nanotechnology.

Professional Profile 

Education

Dr. Sabah Kausar holds an MPhil in Physics from the University of Gujrat, where she conducted pioneering research on nanomaterials and their photocatalytic and antimicrobial properties. Her thesis focused on the synthesis and characterization of BiVO₄-based nanocomposites for enhancing the shelf life of fruits and environmental remediation. Prior to her MPhil, she earned a BS (Honors) in Physics, where she developed a strong foundation in experimental, numerical, and conceptual physics. Her academic journey has been marked by excellence in material physics, spectroscopy, and nanotechnology applications. Additionally, she is currently pursuing a Bachelor of Education (BEd), reinforcing her ability to contribute to academia. With a solid educational background, she has developed expertise in advanced characterization techniques such as XRD, SEM, FTIR, PL, and UV-Vis spectroscopy, which are essential for analyzing the structural, optical, and morphological properties of nanomaterials.

Professional Experience

Dr. Sabah Kausar is an emerging scientist with expertise in photocatalytic nanomaterials, environmental physics, and material characterization. During her MPhil research, she synthesized and tested Ag-doped BiVO₄ and BiVO₄/ZnO nanocomposites to improve photocatalytic activity and antimicrobial performance. Her research has practical implications in water purification, environmental remediation, and food preservation. She has collaborated with interdisciplinary teams to analyze nanoparticle efficiency using XRD, SEM, FTIR, and UV-Vis spectroscopy. She has also contributed to scientific literature through high-impact publications focusing on nanotechnology-based solutions for sustainability. As a physicist, she excels in team collaboration, research execution, and analytical problem-solving. Beyond research, her pursuit of a BEd degree equips her with academic and teaching skills, enhancing her ability to mentor and educate future scientists. With a passion for advancing nanomaterials for environmental and biomedical applications, she is poised to make significant contributions to applied physics and sustainable technology.

Research Interest

Dr. Sabah Kausar’s research interests lie in nanotechnology, photocatalysis, environmental sustainability, and antimicrobial nanomaterials. She focuses on synthesizing and characterizing functional nanocomposites for applications in water purification, energy harvesting, and food preservation. Her expertise extends to advanced material characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL), and UV-Vis analysis, which she employs to explore optical, structural, and chemical properties of materials. She is particularly interested in the development of eco-friendly nanomaterials to combat water pollution and food spoilage. Her work on TiO₂/BiVO₄ nanocomposites for dye and antibiotic degradation has demonstrated significant potential for environmental applications. Additionally, she is keen on interdisciplinary research collaborations to bridge the gap between material science, environmental physics, and biomedicine. With a strong foundation in experimental physics and nanotechnology, she aspires to contribute to cutting-edge advancements in sustainable science and clean energy.

Awards and Honors

Dr. Sabah Kausar has earned recognition for her innovative contributions to nanotechnology and environmental sustainability. Her MPhil research on BiVO₄-based nanomaterials has been widely acknowledged for its practical implications in photocatalysis, antimicrobial applications, and food preservation. She has presented her work at national and international awards, showcasing her expertise in material characterization and sustainable nanotechnology. Additionally, her high-impact publications in peer-reviewed journals reflect her strong research capabilities and commitment to scientific advancement. Her ability to bridge physics, chemistry, and environmental science has positioned her as a promising researcher. As she continues to develop innovative nanomaterials for real-world applications, she remains committed to academic excellence and collaborative research projects. With her growing contributions to scientific knowledge and sustainability-focused solutions, she is a strong candidate for Young Scientist Awards and similar recognitions in the fields of nanotechnology, applied physics, and environmental research.

Conclusion

Dr. Sabah Kausar is a rising physicist and nanotechnology researcher committed to solving environmental and sustainability challenges through innovative material science. With a strong academic background, hands-on research experience, and a passion for applied physics, she has contributed to the development of photocatalytic and antimicrobial nanomaterials. Her work has significant implications for clean energy, water purification, and food preservation, demonstrating the power of interdisciplinary scientific advancements. As a young scientist, she continues to explore new frontiers in nanotechnology, with a focus on sustainable applications. Her ability to integrate material characterization, experimental physics, and environmental research makes her a promising scientific leader. With continued collaborations, high-impact research, and academic contributions, she is well-positioned to make lasting contributions in physics, nanotechnology, and sustainability science.

Publications Top Noted

 

Vincent Ademola Adeyemi | Dynamical Systems | Best Researcher Award

Dr. Vincent Ademola Adeyemi | Dynamical Systems | Best Researcher Award

Researcher Associate at CITEDI-Instituto Politécnico Nacional, Mexico

Dr. Vincent Ademola Adeyemi is a distinguished researcher specializing in digital image processing, cryptography, data encryption, secure communication systems, and FPGA-based implementations. He holds a Doctorate in Science (DSc) in Digital Systems from Instituto Politécnico Nacional (IPN), Mexico, alongside advanced degrees in computer science. His research focuses on nonlinear dynamics, chaos control, and optimization, contributing significantly to the fields of mathematical modeling and secure data transmission. With numerous publications in high-impact, peer-reviewed journals such as Scientific Reports, Sensors, Electronics, and Mathematical Problems in Engineering, he has made notable advancements in secure image encryption and chaos-based cryptographic systems. Dr. Adeyemi collaborates internationally, demonstrating a strong interdisciplinary approach. His work has practical applications in cybersecurity and digital communication. A dedicated academic, he continues to push the boundaries of innovation in applied mathematics and computer science, making him a strong contender for prestigious research awards.

Professional Profile

Google Scholar
Scopus Profile
ORCID Profile

Education

Dr. Vincent Ademola Adeyemi has an extensive academic background in computer science and digital systems. He earned his Doctorate in Science (DSc) in Digital Systems from Instituto Politécnico Nacional (IPN), Mexico (2018–2022), where he focused on FPGA-based implementations and secure communication systems. Prior to this, he obtained a Master of Science (MSc) in Computer Science from the University of Ibadan, Nigeria (2005–2007), and a Bachelor of Science (BSc) in Computer Science from the University of Ado-Ekiti (now Ekiti State University), Nigeria (1998–2002). He also holds a National Diploma in Computer Science from the Federal Polytechnic, Ado-Ekiti, Nigeria (1995–1997). His academic journey reflects a strong foundation in computational theory, digital systems, and cryptography, shaping his expertise in cybersecurity, mathematical modeling, and nonlinear dynamics. Through these qualifications, Dr. Adeyemi has developed a profound understanding of cutting-edge technologies, enabling him to contribute significantly to applied research and innovation.

Professional Experience

Dr. Vincent Ademola Adeyemi has accumulated vast experience in academia and research, focusing on applied mathematics, cryptography, and secure digital communication. He has held research and teaching positions at reputable institutions, engaging in high-level research on FPGA-based systems, data encryption, and chaotic system modeling. His work has involved international collaborations with leading experts in mathematical modeling and digital security, particularly in Mexico and Nigeria. He has played a pivotal role in developing innovative encryption techniques and optimizing chaotic systems for secure communications. As a researcher, he has contributed to peer-reviewed international journals and awards, ensuring the real-world applicability of his findings. His professional engagements also include mentoring students, supervising research projects, and participating in interdisciplinary teams working on cybersecurity solutions. With a strong academic-industrial interface, Dr. Adeyemi continues to advance the frontiers of digital systems, positioning himself as a thought leader in applied cryptography and chaos-based communications.

Research Interest

Dr. Vincent Ademola Adeyemi’s research interests lie in digital image processing, cryptography, data encryption, secure communication systems, nonlinear dynamics, and FPGA-based system design. He specializes in chaos theory applications, particularly in the modeling, control, and synchronization of chaotic systems, which have extensive applications in secure data transmission. His work integrates mathematical modeling with computational techniques to optimize cryptographic algorithms for enhanced security and performance. A significant aspect of his research involves implementing encryption methods on FPGA platforms, ensuring high-speed and energy-efficient solutions for real-time security applications. Additionally, he explores evolutionary algorithms for optimizing chaotic systems, contributing to advances in cyber-physical security. His interdisciplinary approach bridges applied mathematics, digital engineering, and computer science, offering innovative solutions to modern cybersecurity challenges. Through his groundbreaking research, Dr. Adeyemi aims to enhance secure communications, data privacy, and information security in emerging technological landscapes.

Awards and Honors

Dr. Vincent Ademola Adeyemi has received numerous recognitions for his contributions to applied cryptography, secure digital systems, and nonlinear dynamics. His research has been published in high-impact journals such as Scientific Reports, Sensors, Electronics, Fractal and Fractional, and Mathematical Problems in Engineering, reflecting his influence in the scientific community. He has been an active participant in international awards, where his work on FPGA-based encryption and chaos theory has been widely acknowledged. Additionally, his collaborative projects with leading researchers have resulted in technological advancements in secure image transmission and optimization of chaotic systems. His contributions to applied mathematics and computer science have positioned him as a promising candidate for prestigious research awards. Through his academic excellence, Dr. Adeyemi has built a strong reputation in the field, inspiring future researchers and pushing the boundaries of digital security innovations.

Conclusion

Dr. Vincent Ademola Adeyemi is a highly accomplished researcher in digital systems, cryptography, and secure communication. His extensive education, professional experience, and pioneering research in chaos-based encryption and FPGA systems make him a leading figure in applied mathematics and cybersecurity. With a strong publication record in peer-reviewed journals and active participation in international awards, he has contributed significantly to digital security advancements. His work in nonlinear dynamics, optimization, and secure data transmission has practical applications in cybersecurity, digital communication, and mathematical modeling. Recognized for his innovative research, he continues to push technological boundaries in secure digital systems. Through his dedication to academic excellence and interdisciplinary research, Dr. Adeyemi is a valuable contributor to the global scientific community, making him a strong candidate for prestigious research awards and honors. His work not only enhances cybersecurity but also paves the way for future advancements in secure information processing and transmission.

Publications Top Noted

  • Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms
    Authors: JC Nuñez-Perez, VA Adeyemi, Y Sandoval-Ibarra, FJ Perez-Pinal, …
    Year: 2021
    Citations: 20
    Source: Mathematics 9 (11), 1194

  • FPGA realization of spherical chaotic system with application in image transmission
    Authors: JC Nuñez-Perez, VA Adeyemi, Y Sandoval-Ibarra, FJ Pérez-Pinal, …
    Year: 2021
    Citations: 13
    Source: Mathematical Problems in Engineering 2021 (1), 5532106

  • FPGA realization of the parameter-switching method in the Chen oscillator and application in image transmission
    Authors: VA Adeyemi, JC Nuñez-Perez, Y Sandoval Ibarra, FJ Perez-Pinal, …
    Year: 2021
    Citations: 10
    Source: Symmetry 13 (6), 923

  • Optimizing the maximum Lyapunov exponent of fractional order chaotic spherical system by evolutionary algorithms
    Authors: VA Adeyemi, E Tlelo-Cuautle, FJ Perez-Pinal, JC Nuñez-Perez
    Year: 2022
    Citations: 8
    Source: Fractal and Fractional 6 (8), 448

  • FPGA realization of an image encryption system using the DCSK-CDMA technique
    Authors: MA Estudillo-Valdez, VA Adeyemi, JC Nuñez-Perez
    Year: 2024
    Citations: 4
    Source: Integration 96, 102157

  • FPGA Implementation of Parameter-Switching Scheme to Stabilize Chaos in Fractional Spherical Systems and Usage in Secure Image Transmission
    Authors: VA Adeyemi, E Tlelo-Cuautle, Y Sandoval-Ibarra, JC Nuñez-Perez
    Year: 2023
    Citations: 4
    Source: Fractal and Fractional 7 (6), 31

  • FPGA realization of four chaotic interference cases in a terrestrial trajectory model and application in image transmission
    Authors: MA Estudillo-Valdez, VA Adeyemi, E Tlelo-Cuautle, Y Sandoval-Ibarra, …
    Year: 2023
    Citations: 3
    Source: Scientific Reports 13 (1), 12969

  • Secure communication system based on synchronized 3D spherical chaotic systems
    Authors: JCN Pérez, VA Adeyemi, SEG Osuna, YS Ibarra, ET Cuautle
    Year: 2020
    Citations: 3
    Source: 2020 IEEE International Conference on Engineering Veracruz (ICEV), 1-8

  • Mathematical and numerical analysis of the dynamical behavior of Chen oscillator
    Authors: JC Nuñez-Perez, VA Adeyemi, Y Sandoval-Ibarra, RY Serrato-Andrade, …
    Year: 2020
    Citations: 3
    Source: International Journal of Dynamics and Control 8, 386-395

  • FPGA Realization of an Image Encryption System Using a 16-CPSK Modulation Technique
    Authors: JC Nuñez-Perez, MA Estudillo-Valdez, Y Sandoval-Ibarra, VA Adeyemi
    Year: 2024
    Citations: 1
    Source: Electronics 13 (22), 4337

  • Chaos control and anti-control in fractional order Rössler system by parameter switching method
    Authors: VA Adeyemi
    Year: 2020
    Citations: 1
    Source: Revista Aristas, 166-171

 

Muhammad Marwan | Applied Mathematics | Best Researcher Award

Assoc. Prof. Dr. Muhammad Marwan | Applied Mathematics | Best Researcher Award

Associate professor at Linyi university, China

Dr. Marwan Muhammad is a distinguished researcher in applied mathematics, specializing in bifurcation theory, chaos, fractals, mobile chaotic robots, control theory, synchronization, and secure communication. With an H-index of 11, he has published extensively in high-impact journals such as Fractals, Nonlinear Dynamics, and IEEE-IoT. Currently an Associate Professor at Linyi University, China, he has over a decade of teaching and research experience, including a postdoctoral fellowship at Zhejiang Normal University (ZJNU). His work integrates mathematical theory with practical applications in cryptography, robotics, and UAV dynamics. Dr. Muhammad has successfully supervised multiple Master’s students and collaborated on funded research projects. His global academic exposure, particularly in China and Pakistan, enhances his research perspective. While his contributions are significant, further international collaborations, industry engagement, and competitive research grants would solidify his standing as a leading expert in computational and applied mathematics.

Professional Profile

Google Scholar
ORCID Profile

Education

Dr. Marwan Muhammad holds a Ph.D. in Applied Mathematics from the Institute of Space Technology, Pakistan, where he specialized in nonlinear dynamics and stability analysis. His doctoral research focused on applying nonlinear tools to chaotic systems. He earned an M.S. in Mathematics from COMSATS Institute of Information Technology, Pakistan, with a thesis on Fejér-Hadamard inequalities for convex functions. His academic journey began with a B.S. in Mathematics from Islamia College University, Peshawar, where he was awarded a Gold Medal for his outstanding performance. His early education includes an HSSC and SSC from the Peshawar Board, securing top grades. Throughout his academic career, Dr. Muhammad demonstrated a strong foundation in theoretical and applied mathematics, equipping him with the expertise needed to excel in research and teaching. His education has played a pivotal role in shaping his research trajectory, particularly in bifurcation theory, chaos, fractals, and control systems.

Professional Experience

Dr. Marwan Muhammad has over a decade of experience in academia and research. He is currently an Associate Professor at Linyi University, China, where he teaches and supervises research in applied mathematics. Previously, he completed a postdoctoral fellowship at Zhejiang Normal University (ZJNU), China, focusing on advanced topics in nonlinear dynamics. His professional journey includes serving as a Lecturer at Islamabad Model Postgraduate College, Riphah International University, and the Higher Education Department of Peshawar. His teaching portfolio covers a broad range of mathematical disciplines, including computational mathematics, dynamical systems, and mathematical modeling. Additionally, he has worked on a research project funded by the Higher Education Commission (HEC) of Pakistan, leading to several high-impact publications. His international exposure, particularly in China and Pakistan, has enriched his academic perspective, allowing him to integrate diverse mathematical techniques into his research and contribute significantly to the global scientific community.

Research Interest

Dr. Marwan Muhammad’s research focuses on nonlinear dynamics, bifurcation theory, chaos, fractals, control theory, synchronization, and secure communication. His work in mobile chaotic robots and multi-scroll attractors has applications in cryptography, robotics, and artificial intelligence. He is particularly interested in the mathematical modeling of complex systems, including UAV dynamics, plasma systems, and satellite chaotic systems. His contributions extend to fractional calculus, where he has analyzed tumor-immune interactions and porous medium equations. His research also explores numerical methods for solving chaotic systems, emphasizing computational efficiency and accuracy. Dr. Muhammad’s interdisciplinary approach integrates mathematics, physics, and engineering, leading to innovative solutions for real-world problems. His recent publications in journals like Fractals and Nonlinear Dynamics demonstrate his ability to bridge theoretical insights with practical applications, positioning him as a key contributor to the fields of computational and applied mathematics.

Awards and Honors

Dr. Marwan Muhammad has been recognized for his academic excellence and research contributions. He was awarded a Gold Medal for securing the highest distinction in his undergraduate studies at Islamia College University, Peshawar. His research has been published in prestigious journals, highlighting his impact in the field of applied mathematics. His contributions to nonlinear dynamics and chaotic systems have earned him invitations to collaborate on international research projects. Additionally, his supervision of Master’s students and successful research collaborations reflect his commitment to academic mentorship. His work has received recognition from funding agencies such as the Higher Education Commission (HEC) of Pakistan, under which he successfully led research projects. While his accolades are notable, continued participation in international awards, securing competitive research grants, and expanding collaborations with leading global institutions would further elevate his reputation as a distinguished researcher in computational and applied mathematics.

Conclusion

Dr. Marwan Muhammad is an accomplished mathematician whose research in nonlinear dynamics, chaos, and fractals has significantly contributed to applied mathematics. With a strong educational foundation, international research experience, and extensive teaching background, he has established himself as a key figure in computational mathematics. His work has practical applications in cryptography, robotics, and control systems, making it relevant to both academia and industry. While his publications and collaborations are impressive, expanding his research network, securing additional funding, and engaging in interdisciplinary projects could further enhance his impact. His dedication to mentoring students and advancing mathematical knowledge underscores his potential for continued success. With sustained efforts, Dr. Muhammad is poised to become a leading authority in his field, driving innovation and discovery in mathematical sciences.

Publications Top Noted

  • Coexisting attractor in a gyrostat chaotic system via basin of attraction and synchronization of two nonidentical mechanical systems
    Authors: M. Marwan, V. Dos Santos, M.Z. Abidin, A. Xiong
    Year: 2022
    Citations: 11
    Source: Mathematics, 10(11), 1914

  • Retardational effect and Hopf bifurcations in a new attitude system of quad-rotor unmanned aerial vehicle
    Authors: M. Fiaz, M. Aqeel, M. Marwan, M. Sabir
    Year: 2021
    Citations: 11
    Source: International Journal of Bifurcation and Chaos, 31(09), 2150127

  • Control and numerical analysis for cancer chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, M. Shaukat
    Year: 2020
    Citations: 11
    Source: Archive of Applied Mechanics, 90, 2597-2608

  • Image cryptography communication using FPAA-based multi-scroll chaotic system
    Authors: K. Karawanich, J. Chimnoy, F. Khateb, M. Marwan, P. Prommee
    Year: 2024
    Citations: 8
    Source: Nonlinear Dynamics, 112(6), 4951-4976

  • Hopf bifurcation analysis for liquid-filled gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
    Authors: M. Sabir, S. Ahmad, M. Marwan
    Year: 2021
    Citations: 8
    Source: Open Physics, 19(1), 539-550

  • Investigation of fractional-ordered tumor-immune interaction model via fractional-order derivative
    Authors: G. Ali, M. Marwan, U.U. Rahman, M. Hleili
    Year: 2024
    Citations: 7
    Source: Fractals, 32(06), 1-10

  • Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems
    Authors: M. Marwan, M.Z. Abidin, H. Kalsoom, M. Han
    Year: 2022
    Citations: 7
    Source: Fractal and Fractional, 6(4), 189

  • Generation of multi-scrolls in coronavirus disease 2019 (COVID-19) chaotic system and its impact on the zero-COVID policy
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 6
    Source: Scientific Reports, 13, 13954

  • Novel approaches for solving fuzzy fractional partial differential equations
    Authors: M. Osman, Y. Xia, M. Marwan, O.A. Omer
    Year: 2022
    Citations: 6
    Source: Fractal and Fractional, 6(11), 656

  • Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications
    Authors: H. Kalsoom, M. Vivas-Cortez, M.Z. Abidin, M. Marwan, Z.A. Khan
    Year: 2022
    Citations: 6
    Source: Symmetry, 14(7), 1449

  • Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputs—application to chaos synchronization
    Authors: L. Moysis, M. Tripathi, M.K. Gupta, M. Marwan, C. Volos
    Year: 2022
    Citations: 6
    Source: Archives of Control Sciences, 32

  • Mixed obstacle avoidance in mobile chaotic robots with directional keypads and its non-identical generalized synchronization
    Authors: M. Marwan, F. Li, S. Ahmad, N. Wang
    Year: 2025
    Citations: 5
    Source: Nonlinear Dynamics, 113(3), 2377-2390

  • Chaotic behavior of Lorenz-based chemical system under the influence of fractals
    Authors: M. Marwan, A. Xiong, M. Han, R. Khan
    Year: 2024
    Citations: 4
    Source: Match Communications in Mathematical and Computer Chemistry, 91(2), 307-336

  • Control analysis of virotherapy chaotic system
    Authors: J. Iqbal, S. Ahmad, M. Marwan, A. Rafiq
    Year: 2022
    Citations: 4
    Source: Journal of Biological Dynamics, 16(1), 585-595

  • Hidden covers (wings) in the fractals of chaotic systems using advanced Julia function
    Authors: M. Marwan, M. Han, M. Osman
    Year: 2023
    Citations: 3
    Source: Fractals, 31(09), 2350125

  • Generalized external synchronization of networks based on clustered pandemic systems—The approach of COVID-19 towards influenza
    Authors: M. Marwan, M. Han, R. Khan
    Year: 2023
    Citations: 3
    Source: PLOS ONE, 18(10), e0288796

  • Existence of Solution and Self‐Exciting Attractor in the Fractional‐Order Gyrostat Dynamical System
    Authors: M. Marwan, G. Ali, R. Khan
    Year: 2022
    Citations: 3
    Source: Complexity, 2022(1), 3505634

  • On the analytical approach of codimension-three degenerate Bogdanov-Takens (BT) bifurcation in satellite dynamical system
    Authors: M. Marwan, M.Z. Abidin
    Year: 2023
    Citations: 2
    Source: Journal of Nonlinear Modeling and Analysis

  • On the global well-posedness of rotating magnetohydrodynamics equations with fractional dissipation
    Authors: M.Z. Abidin, M. Marwan, H. Kalsoom, O.A. Omer
    Year: 2022
    Citations: 2
    Source: Fractal and Fractional, 6(6), 340

  • Semi-analytical analysis of a fractional-order pandemic dynamical model using non-local operator
    Authors: M. Marwan, G. Ali, F. Li, S.A.O. Abdallah, T. Saidani
    Year: 2025
    Source: Fractals

 

Felix Sadyrbaev | Applied Mathematics | Best Researcher Award

Prof. Felix Sadyrbaev | Applied Mathematics | Best Researcher Award

Researcher at Institute of Mathematics and Computer Science, University of Latvia (LU MII abbreviated), Latvia

Professor Felix Sadyrbaev is a distinguished mathematician specializing in dynamical systems, boundary value problems, and mathematical modeling, particularly in network theory and gene regulatory networks. He earned his Ph.D. from Belorussian State University (1982) and completed his habilitation at Latvian State University (1995). Currently, he serves as the Head of Laboratory at the Institute of Mathematics and Computer Science, University of Latvia, and as a Professor and Director of the Doctorate Program in Mathematics at Daugavpils University. With over 190 scholarly publications and active participation in multiple International Congresses of Mathematicians, he has significantly contributed to mathematical research and education. A member of the Latvian and American Mathematical Societies, he also serves on editorial boards of international mathematical journals. Recognized for his contributions, he was elected a Full Member of the Academy of Sciences of Latvia in 2021, further solidifying his impact on the global mathematical community.

Professional Profile 

Scopus Profile
ORCID Profile

Education

Professor Felix Sadyrbaev completed his undergraduate studies at Latvian State University (Riga, former USSR) and later pursued his Ph.D. in Mathematics at Belorussian State University (Minsk) in 1982. His doctoral research focused on dynamical systems, particularly boundary value problems and qualitative theory. In 1995, he earned his habilitation from Latvian State University, further advancing his expertise in mathematical modeling and optimization theory. His academic journey reflects a strong foundation in both theoretical and applied mathematics, enabling him to contribute significantly to various research domains. His education in leading institutions of the former USSR provided him with rigorous training in mathematical analysis, which has been instrumental in shaping his research career. Over the years, his academic background has allowed him to bridge different areas of mathematics, making significant contributions to network theory, gene regulatory networks, and mathematical optimization. His expertise continues to drive innovative research in applied and theoretical mathematics.

Professional Experience

Professor Sadyrbaev has had a distinguished career in academia and research spanning over four decades. Since 1978, he has been affiliated with the Institute of Mathematics and Computer Science at the University of Latvia, where he currently serves as the Head of Laboratory. In 1999, he joined Daugavpils University as a Professor and Director of the Doctorate Program in Mathematics, contributing significantly to the academic development of future researchers. His leadership roles have involved mentoring Ph.D. students, directing mathematical research initiatives, and fostering collaborations with international institutions. As an expert in dynamical systems and mathematical modeling, he has played a key role in advancing the field both locally and globally. His participation in international awards and research projects underscores his commitment to academic excellence. His long-standing association with multiple institutions highlights his dedication to fostering innovation, research collaboration, and the advancement of mathematical sciences.

Research Interest

Professor Sadyrbaev’s research interests lie in the areas of dynamical systems, boundary value problems, and mathematical modeling, with a strong focus on network theory and gene regulatory networks. His work in qualitative theory and optimization has been instrumental in advancing mathematical methods for solving complex real-world problems. He has contributed significantly to differential equations, stability analysis, and nonlinear dynamics, providing insights into critical mathematical frameworks. His interdisciplinary approach bridges applied mathematics, computational techniques, and theoretical modeling, making his research highly relevant across various scientific domains. His contributions to mathematical modeling in biology and engineering have led to significant applications, particularly in understanding complex network systems. With over 190 publications and numerous plenary talks, his research has influenced both academia and industry. His ongoing work continues to explore innovative mathematical methods for solving contemporary challenges, reinforcing his impact on the global mathematical community.

Awards and Honors

Professor Sadyrbaev has received prestigious recognition for his outstanding contributions to mathematics. In 2021, he was elected a Full Member of the Academy of Sciences of Latvia, a testament to his significant impact on mathematical research and education. His participation in major International Congresses of Mathematicians (ICM) across different countries, including Berlin, Beijing, Bangalore, Seoul, and São Paulo, highlights his global academic influence. He has also served as a delegate to the International Mathematical Union (IMU) General Assembly, representing the Latvian Mathematical Society in key international discussions. Additionally, he is a member of the Latvian Mathematical Society and the American Mathematical Society, further cementing his standing in the international mathematical community. His editorial board memberships in several international mathematical journals reflect his role in shaping contemporary mathematical research. His numerous honors underscore his dedication to advancing mathematical sciences through research, mentorship, and academic leadership.

Conclusion

Professor Felix Sadyrbaev is a highly accomplished mathematician with extensive contributions to dynamical systems, mathematical modeling, and network theory. His distinguished career spans over four decades, with significant roles in research, academic leadership, and international collaborations. His election as a Full Member of the Academy of Sciences of Latvia, numerous publications, and participation in prestigious international congresses solidify his reputation as a leading expert in his field. His influence extends beyond research, as he plays a key role in mentoring future mathematicians and fostering interdisciplinary collaborations. As a respected figure in the mathematical community, his work continues to shape contemporary mathematical theory and applications. Through his editorial roles, award participation, and research impact, he remains a driving force in the advancement of mathematical sciences. His remarkable career serves as an inspiration for young researchers and highlights the importance of mathematics in solving real-world challenges.

Publications Top Noted

  • On differential equations with exponential nonlinearities

    • Authors: Armands Gritsans, Felix Sadyrbaev
    • Year: 2025
    • Source: Applied Numerical Mathematics
  • Remarks on Modeling of Neural Networks

    • Authors: Felix Sadyrbaev
    • Year: [No year mentioned]
    • Source: [No source information available]
  • In Search of Chaos in Genetic Systems

    • Authors: Olga Kozlovska, Felix Sadyrbaev
    • Year: 2024
    • Source: Chaos Theory and Applications
  • Comparative Analysis of Models of Genetic and Neuronal Networks

    • Authors: Diana Ogorelova, Felix Sadyrbaev
    • Year: 2024
    • Source: Mathematical Modelling and Analysis
  • Editorial: Mathematical modeling of gene networks

    • Authors: Jacques François Demongeot, Felix Sadyrbaev, Inna Samuilik
    • Year: 2024
    • Source: Frontiers in Applied Mathematics and Statistics
  • On Period Annuli and Induced Chaos

    • Authors: Svetlana Atslega, Olga Kozlovska, Felix Sadyrbaev
    • Year: 2024
    • Source: WSEAS Transactions on Systems
  • A New 3D Chaotic Attractor in Gene Regulatory Network

    • Authors: Olga Kozlovska, Felix Sadyrbaev, Inna Samuilik
    • Year: 2024
    • Source: Mathematics
  • On Solutions of the Third-Order Ordinary Differential Equations of Emden-Fowler Type

    • Authors: Felix Sadyrbaev
    • Year: 2023
    • Source: Dynamics
  • On Coexistence of Inhibition and Activation in Genetic Regulatory Networks

    • Authors: Felix Sadyrbaev, Valentin Sengileyev, Albert Silvans
    • Year: [No year mentioned]